Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
297
result(s) for
"Sergio A. Lira"
Sort by:
Intratumoral heterogeneity and clonal evolution in liver cancer
2020
Clonal evolution of a tumor ecosystem depends on different selection pressures that are principally immune and treatment mediated. We integrate RNA-seq, DNA sequencing, TCR-seq and SNP array data across multiple regions of liver cancer specimens to map spatio-temporal interactions between cancer and immune cells. We investigate how these interactions reflect intra-tumor heterogeneity (ITH) by correlating regional neo-epitope and viral antigen burden with the regional adaptive immune response. Regional expression of passenger mutations dominantly recruits adaptive responses as opposed to hepatitis B virus and cancer-testis antigens. We detect different clonal expansion of the adaptive immune system in distant regions of the same tumor. An ITH-based gene signature improves single-biopsy patient survival predictions and an expression survey of 38,553 single cells across 7 regions of 2 patients further reveals heterogeneity in liver cancer. These data quantify transcriptomic ITH and how the different components of the HCC ecosystem interact during cancer evolution.
Immune-mediated selection pressures impact the clonal evolution of tumours. Here, in hepatocellular carcinoma the authors map spatio-temporal interactions between tumor and immune cells, highlighting the regulatory substrate of intra-tumoural heterogeneity that correlates with regional adaptive immune responses.
Journal Article
Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling
2019
Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remain a key open question. Here we show that whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. This synapse elimination is dependent on signaling by CX3CR1, the receptor for microglial fractalkine (also known as CXCL1), but not complement receptor 3. Furthermore, mice deficient in CX3CL1 have profound defects in synapse elimination. Single-cell RNA sequencing revealed that Cx3cl1 is derived from cortical neurons, and ADAM10, a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and in microglia following whisker lesioning. Finally, inhibition of ADAM10 phenocopies Cx3cr1−/− and Cx3cl1−/− synapse elimination defects. Together, these results identify neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal that context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain.
Journal Article
Neuropeptide regulation of non-redundant ILC2 responses at barrier surfaces
2022
Emerging studies indicate that cooperation between neurons and immune cells regulates antimicrobial immunity, inflammation and tissue homeostasis. For example, a neuronal rheostat provides excitatory or inhibitory signals that control the functions of tissue-resident group 2 innate lymphoid cells (ILC2s) at mucosal barrier surfaces
1
–
4
. ILC2s express NMUR1, a receptor for neuromedin U (NMU), which is a prominent cholinergic neuropeptide that promotes ILC2 responses
5
–
7
. However, many functions of ILC2s are shared with adaptive lymphocytes, including the production of type 2 cytokines
8
,
9
and the release of tissue-protective amphiregulin (AREG)
10
–
12
. Consequently, there is controversy regarding whether innate lymphoid cells and adaptive lymphocytes perform redundant or non-redundant functions
13
–
15
. Here we generate a new genetic tool to target ILC2s for depletion or gene deletion in the presence of an intact adaptive immune system. Transgenic expression of iCre recombinase under the control of the mouse
Nmur1
promoter enabled ILC2-specific deletion of AREG. This revealed that ILC2-derived AREG promotes non-redundant functions in the context of antiparasite immunity and tissue protection following intestinal damage and inflammation. Notably, NMU expression levels increased in inflamed intestinal tissues from both mice and humans, and NMU induced AREG production in mouse and human ILC2s. These results indicate that neuropeptide-mediated regulation of non-redundant functions of ILC2s is an evolutionarily conserved mechanism that integrates immunity and tissue protection.
The development of a new genetic tool to selectively deplete or modify group 2 innate lymphoid cells (ILC2s) addresses the debate regarding the non-redundant functions of this immune cell type.
Journal Article
Dynamic regulation of B cell complement signaling is integral to germinal center responses
2021
Maturation of B cells within germinal centers (GCs) generates diversified B cell pools and high-affinity B cell antigen receptors (BCRs) for pathogen clearance. Increased receptor affinity is achieved by iterative cycles of T cell–dependent, affinity-based B cell positive selection and clonal expansion by mechanisms hitherto incompletely understood. Here we found that, as part of a physiologic program, GC B cells repressed expression of decay-accelerating factor (DAF/CD55) and other complement C3 convertase regulators via BCL6, but increased the expression of C5b-9 inhibitor CD59. These changes permitted C3 cleavage on GC B cell surfaces without the formation of membrane attack complex and activated C3a- and C5a-receptor signals required for positive selection. Genetic disruption of this pathway in antigen-activated B cells by conditional transgenic DAF overexpression or deletion of C3a and C5a receptors limited the activation of mechanistic target of rapamycin (mTOR) in response to BCR–CD40 signaling, causing premature GC collapse and impaired affinity maturation. These results reveal that coordinated shifts in complement regulation within the GC provide crucial signals underlying GC B cell positive selection.
Heeger and colleagues report that activated B cells dynamically regulate the expression of complement regulatory proteins via the transcription factor BCL6. C3 convertase activity and C3aR1–C5aR1 signaling were both necessary for optimal B cell activation and germinal center formation.
Journal Article
Mesenchymal and haematopoietic stem cells form a unique bone marrow niche
by
Scadden, David T.
,
Mazloom, Amin R.
,
Ma’ayan, Avi
in
631/136/142
,
631/136/232/1473/1542
,
631/136/532/2074
2010
The cellular constituents forming the haematopoietic stem cell (HSC) niche in the bone marrow are unclear, with studies implicating osteoblasts, endothelial and perivascular cells. Here we demonstrate that mesenchymal stem cells (MSCs), identified using nestin expression, constitute an essential HSC niche component. Nestin
+
MSCs contain all the bone-marrow colony-forming-unit fibroblastic activity and can be propagated as non-adherent ‘mesenspheres’ that can self-renew and expand in serial transplantations. Nestin
+
MSCs are spatially associated with HSCs and adrenergic nerve fibres, and highly express HSC maintenance genes. These genes, and others triggering osteoblastic differentiation, are selectively downregulated during enforced HSC mobilization or β3 adrenoreceptor activation. Whereas parathormone administration doubles the number of bone marrow nestin
+
cells and favours their osteoblastic differentiation,
in vivo
nestin
+
cell depletion rapidly reduces HSC content in the bone marrow. Purified HSCs home near nestin
+
MSCs in the bone marrow of lethally irradiated mice, whereas
in vivo
nestin
+
cell depletion significantly reduces bone marrow homing of haematopoietic progenitors. These results uncover an unprecedented partnership between two distinct somatic stem-cell types and are indicative of a unique niche in the bone marrow made of heterotypic stem-cell pairs.
A stem-cell niche made for two
The identity of the cells that form the haematopoietic stem-cell niche in the bone marrow has been unclear. Paul Frenette and colleagues have now identified nestin-expressing mesenchymal stem cells as niche-forming cells. These cells show a close physical association with haematopoietic stem cells, express high levels of genes involved in stem-cell maintenance, and their depletion reduces bone-marrow homing of haematopoietic progenitors. This work reveals the stem-cell niche in the bone marrow as a partnership between two distinct somatic stem-cell types.
The identity of the cells that form the haematopoietic stem cell (HSC) niche in bone marrow has been unclear. These authors identify nestin-expressing mesenchymal stem cells as niche-forming cells. These nestin-expressing cells show a close physical association with HSCs and express high levels of genes involved in HSC maintenance, and their depletion reduces bone marrow homing of haematopoietic progenitors.
Journal Article
Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization
2015
Here we show that iNOS-deficient mice display enhanced classically activated M1 macrophage polarization without major effects on alternatively activated M2 macrophages. eNOS and nNOS mutant mice show comparable M1 macrophage polarization compared with wild-type control mice. Addition of N6-(1-iminoethyl)-L-lysine dihydrochloride, an iNOS inhibitor, significantly enhances M1 macrophage polarization while S-nitroso-N-acetylpenicillamine, a NO donor, suppresses M1 macrophage polarization. NO derived from iNOS mediates nitration of tyrosine residues in IRF5 protein, leading to the suppression of IRF5-targeted M1 macrophage signature gene activation. Computational analyses corroborate a circuit that fine-tunes the expression of IL-12 by iNOS in macrophages, potentially enabling versatile responses based on changing microenvironments. Finally, studies of an experimental model of endotoxin shock show that iNOS deficiency results in more severe inflammation with an enhanced M1 macrophage activation phenotype. These results suggest that NO derived from iNOS in activated macrophages suppresses M1 macrophage polarization.
In response to microbial ligands, IRF5 promotes pro-inflammatory M1 macrophage activation and production of nitrous oxide. Here the authors show that nitrous oxide modifies IRF5 tyrosine residues as a negative feedback, limiting the inflammatory response and protecting from endotoxin shock.
Journal Article
Monocyte depletion enhances neutrophil influx and proneural to mesenchymal transition in glioblastoma
2023
Myeloid cells comprise the majority of immune cells in tumors, contributing to tumor growth and therapeutic resistance. Incomplete understanding of myeloid cells response to tumor driver mutation and therapeutic intervention impedes effective therapeutic design. Here, by leveraging CRISPR/Cas9-based genome editing, we generate a mouse model that is deficient of all monocyte chemoattractant proteins. Using this strain, we effectively abolish monocyte infiltration in genetically engineered murine models of de novo glioblastoma (GBM) and hepatocellular carcinoma (HCC), which show differential enrichment patterns for monocytes and neutrophils. Eliminating monocyte chemoattraction in monocyte enriched
PDGFB
-driven GBM invokes a compensatory neutrophil influx, while having no effect on
Nf1
-silenced GBM model. Single-cell RNA sequencing reveals that intratumoral neutrophils promote proneural-to-mesenchymal transition and increase hypoxia in
PDGFB
-driven GBM. We further demonstrate neutrophil-derived TNF-a directly drives mesenchymal transition in
PDGFB
-driven primary GBM cells. Genetic or pharmacological inhibiting neutrophils in HCC or monocyte-deficient
PDGFB
-driven and
Nf1
-silenced GBM models extend the survival of tumor-bearing mice. Our findings demonstrate tumor-type and genotype dependent infiltration and function of monocytes and neutrophils and highlight the importance of targeting them simultaneously for cancer treatments.
Myeloid cells are the predominant cell type in the tumor microenvironment of human and murine glioblastoma (GBM). By generating a mouse model deficient for all monocyte chemoattractant proteins, here the authors show that blocking monocyte recruitment promotes a compensatory neutrophil influx and that concomitant neutrophil inhibition is required to improve survival in GBM preclinical models.
Journal Article
Skin expression of IL-23 drives the development of psoriasis and psoriatic arthritis in mice
2020
Psoriasis (PS) is a chronic skin inflammation. Up to 30% of the patients with PS develop psoriatic arthritis (PsA), a condition characterized by inflammatory arthritis that affects joints or entheses. Although there is mounting evidence for a critical role of interleukin-23 (IL-23) signaling in the pathogenesis of both PS and PsA, it remains unclear whether IL-23-induced skin inflammation drives joint disease. Here, we show that mice expressing increased levels of IL-23 in the skin (
K23
mice) develop a PS-like disease that is characterized by acanthosis, parakeratosis, hyperkeratosis, and inflammatory infiltrates in the dermis. Skin disease preceded development of PsA, including enthesitis, dactylitis, and bone destruction. The development of enthesitis and dactylitis was not due to high circulating levels of IL-23, as transgenic animals and controls had similar levels of this cytokine in circulation. IL-22, a downstream cytokine of IL-23, was highly increased in the serum of
K23
mice. Although IL-22 deficiency did not affect skin disease development, IL-22 deficiency aggravated the PsA-like disease in
K23
mice. Our results demonstrate a central role for skin expressed IL-23 in the initiation of PS and on pathogenic processes leading to PsA.
Journal Article
Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques
by
Habenicht, Andreas J.
,
Tacke, Frank
,
Randolph, Gwendalyn J.
in
Animals
,
Atherosclerosis
,
Atherosclerosis - blood
2007
Monocytes participate critically in atherosclerosis. There are 2 major subsets expressing different chemokine receptor patterns: CCR2(+)CX3CR1(+)Ly-6C(hi) and CCR2(-)CX3CR1(++)Ly-6C(lo) monocytes. Both C-C motif chemokine receptor 2 (CCR2) and C-X(3)-C motif chemokine receptor 1 (CX3CR1) are linked to progression of atherosclerotic plaques. Here, we analyzed mouse monocyte subsets in apoE-deficient mice and traced their differentiation and chemokine receptor usage as they accumulated within atherosclerotic plaques. Blood monocyte counts were elevated in apoE(-/-) mice and skewed toward an increased frequency of CCR2(+)Ly-6C(hi) monocytes in apoE(-/-) mice fed a high-fat diet. CCR2(+)Ly-6C(hi) monocytes efficiently accumulated in plaques, whereas CCR2(-)Ly-6C(lo) monocytes entered less frequently but were more prone to developing into plaque cells expressing the dendritic cell-associated marker CD11c, indicating that phagocyte heterogeneity in plaques is linked to distinct types of entering monocytes. CCR2(-) monocytes did not rely on CX3CR1 to enter plaques. Instead, they were partially dependent upon CCR5, which they selectively upregulated in apoE(-/-) mice. By comparison, CCR2(+)Ly-6C(hi) monocytes unexpectedly required CX3CR1 in addition to CCR2 and CCR5 to accumulate within plaques. In many other inflammatory settings, these monocytes utilize CCR2, but not CX3CR1, for trafficking. Thus, antagonizing CX3CR1 may be effective therapeutically in ameliorating CCR2(+) monocyte recruitment to plaques without impairing their CCR2-dependent responses to inflammation overall.
Journal Article
Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin
by
Tanizaki, Hideaki
,
Moro, Kazuyo
,
Horiuchi, Keisuke
in
631/250/2504/133/1593
,
631/250/98
,
631/80/84
2012
Hair is a skin component that functions as a physical barrier and thermal regulator. Nagao and colleagues show that hair follicles recruit Langerhans cells to the epidermis via the secretion of various chemokines.
Langerhans cells (LCs) are epidermal dendritic cells with incompletely understood origins that associate with hair follicles for unknown reasons. Here we show that in response to external stress, mouse hair follicles recruited Gr-1
hi
monocyte-derived precursors of LCs whose epidermal entry was dependent on the chemokine receptors CCR2 and CCR6, whereas the chemokine receptor CCR8 inhibited the recruitment of LCs. Distinct hair-follicle regions had differences in their expression of ligands for CCR2 and CCR6. The isthmus expressed the chemokine CCL2; the infundibulum expressed the chemokine CCL20; and keratinocytes in the bulge produced the chemokine CCL8, which is the ligand for CCR8. Thus, distinct hair-follicle keratinocyte subpopulations promoted or inhibited repopulation with LCs via differences in chemokine production, a feature also noted in humans. Pre-LCs failed to enter hairless skin in mice or humans, which establishes hair follicles as portals for LCs.
Journal Article