Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
129 result(s) for "Serkez, S"
Sort by:
Analysis of the error budget for a superconducting undulator SASE line at European XFEL
European XFEL is investing in the development of superconducting undulators (SCUs) for future upgrade of its beamlines. SCUs made of NbTi, working at 2 K, with a period length of 15 mm and a vacuum gap of 5 mm allow covering a range between 54 keV and 100 keV. The effect of mechanical errors in the distribution of the undulator parameter K along the undulators is more relevant for working points at lower photon energy, which are obtained using a higher magnetic field in the undulator. In this article we investigate the effect of error distribution in the K-parameter for a working point at 50 keV photon energy obtained injecting an electron beam with 16.5 GeV energy from the XFEL linear accelerator in a undulator line composed by SCUs with 1.6 T peak magnetic field.
A pre-series prototype for the superconducting undulator afterburner for the European XFEL
We propose to develop, characterize and operate a superconducting undulator (SCU) afterburner consisting of 5 undulator modules (1 module = 2 SCU coils of 2 m length and 1 phase shifter) plus a pre-series prototype at the SASE2 hard X-ray beamline of European XFEL. This afterburner will produce an output in the order of 10 10 ph/pulse at photon energies above 30 keV. The project is divided into the production of a pre-series prototype module and a small-series production of 5 modules. Central goals of this R&D activity are: the demonstration of the functionality of SCUs at an X-ray FEL, the set up of the needed infrastructure to characterize and operate SCUs, the industrialization of such undulators, and the reduction of the price per module. In this contribution, the main parameters and specifications of the pre-series prototype module are described.
Constraints on photon pulse duration from longitudinal electron beam diagnostics at a soft x-ray free-electron laser
The successful operation of x-ray free-electron lasers (FELs), like the Linac Coherent Light Source or the Free-Electron Laser in Hamburg (FLASH), makes unprecedented research on matter at atomic length and ultrafast time scales possible. However, in order to take advantage of these unique light sources and to meet the strict requirements of many experiments in photon science, FEL photon pulse durations need to be known and tunable. This can be achieved by controlling the FEL driving electron beams, and high-resolution longitudinal electron beam diagnostics can be utilized to provide constraints on the expected FEL photon pulse durations. In this paper, we present comparative measurements of soft x-ray pulse durations and electron bunch lengths at FLASH. The soft x-ray pulse durations were measured by FEL radiation pulse energy statistics and compared to electron bunch lengths determined by frequency-domain spectroscopy of coherent transition radiation in the terahertz range and time-domain longitudinal phase space measurements. The experimental results, theoretical considerations, and simulations show that high-resolution longitudinal electron beam diagnostics provide reasonable constraints on the expected FEL photon pulse durations. In addition, we demonstrated the generation of soft x-ray pulses with durations below 50 fs (FWHM) after the implementation of the new uniform electron bunch compression scheme used at FLASH.
Terawatt x-ray free-electron-laser optimization by transverse electron distribution shaping
We study the dependence of the peak power of a 1.5 Å Terawatt (TW), tapered x-ray free-electron laser (FEL) on the transverse electron density distribution. Multidimensional optimization schemes for TW hard x-ray free-electron lasers are applied to the cases of transversely uniform and parabolic electron beam distributions and compared to a Gaussian distribution. The optimizations are performed for a 200 m undulator and a resonant wavelength of λr=1.5Å using the fully three-dimensional FEL particle code genesis. The study shows that the flatter transverse electron distributions enhance optical guiding in the tapered section of the undulator and increase the maximum radiation power from a maximum of 1.56 TW for a transversely Gaussian beam to 2.26 TW for the parabolic case and 2.63 TW for the uniform case. Spectral data also shows a 30%–70% reduction in energy deposited in the sidebands for the uniform and parabolic beams compared with a Gaussian. An analysis of the transverse coherence of the radiation shows the coherence area to be much larger than the beam spotsize for all three distributions, making coherent diffraction imaging experiments possible.
Diffraction based Hanbury Brown and Twiss interferometry at a hard x-ray free-electron laser
X-ray free-electron lasers (XFELs) provide extremely bright and highly spatially coherent x-ray radiation with femtosecond pulse duration. Currently, they are widely used in biology and material science. Knowledge of the XFEL statistical properties during an experiment may be vitally important for the accurate interpretation of the results. Here, for the first time, we demonstrate Hanbury Brown and Twiss (HBT) interferometry performed in diffraction mode at an XFEL source. It allowed us to determine the XFEL statistical properties directly from the Bragg peaks originating from colloidal crystals. This approach is different from the traditional one when HBT interferometry is performed in the direct beam without a sample. Our analysis has demonstrated nearly full (80%) global spatial coherence of the XFEL pulses and an average pulse duration on the order of ten femtoseconds for the monochromatized beam, which is significantly shorter than expected from the electron bunch measurements.
Observation of harmonic lasing in the Angstrom regime at European X-ray Free Electron Laser
Harmonic lasing provides an opportunity to extend the photon energy range of existing and planned x-ray free electron laser (FEL) user facilities. Contrary to nonlinear harmonic generation, harmonic lasing can generate a much more intense, stable, and narrow-band FEL beam. Another interesting application is harmonic lasing self-seeding that allows to improve the longitudinal coherence and spectral power of a self-amplified spontaneous emission FEL. This concept was tested at the soft x-ray FEL user facility FLASH in the range of 4.5–15 nm and at Pohang accelerator laboratory X-ray Free Electron Laser (XFEL) at 1 nm. In this paper we present recent results from the European XFEL where we successfully demonstrated harmonic lasing at 5.9 Angstrom and 2.8 Angstrom. In the latter case we obtained both third and fifth harmonic lasing and, for the first time, operated a harmonic lasing cascade (fifth-third-first harmonics of the undulator). These results pave the way for reaching very high photon energies, up to 100 keV.
Simulation studies of superconducting afterburner operation for the European XFEL
European XFEL is a multi-beamline x-ray free-electron laser (FEL) user facility driven by a superconducting accelerator with a nominal photon energy range from 250 eV to 25 keV. An afterburner undulator based on superconducting undulator technology is currently being investigated to enable extension of the photon energy range towards harder x-rays. This afterburner undulator would be installed downstream of the already operating SASE2 FEL beamline, emitting at the fundamental or at a harmonic of the upstream undulator system. In this contribution we describe the layout under study and present numerical simulations.
Observation of harmonic lasing in the Angstrom regime at European XFEL
Harmonic lasing provides an opportunity to extend the photon energy range of existing and planned X-ray FEL user facilities. Contrary to nonlinear harmonic generation, harmonic lasing can generate a much more intense, stable, and narrow-band FEL beam. Another interesting application is Harmonic Lasing Self-Seeding (HLSS) that allows to improve the longitudinal coherence and spectral power of a Self-Amplified Spontaneous Emission (SASE) FEL. This concept was tested at FLASH in the range of 4.5 - 15 nm and at PAL XFEL at 1 nm. In this paper we present recent results from the European XFEL where we successfully demonstrated harmonic lasing at 5.9 Angstrom and 2.8 Angstrom. In the latter case we obtained both 3rd and 5th harmonic lasing and, for the first time, operated a harmonic lasing cascade (5th-3rd-1st harmonics of the undulator). These results pave the way for reaching very high photon energies, up to 100 keV.