Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
20 result(s) for "Service, Natural Resources Conservation"
Sort by:
Dig in
Give students the dirt on soil with a practical book that brings new meaning to the term \"hands-on.\" Using these 12 activities and two original stories as guides, kids will soon be up to their elbows in the study of soil formation, habitats and land use, animals that depend on soil, plants that grow in soil, soil science, and soil conservation. Each teacher-tested lesson plan offers helpful background, assessment methods, and suggestions for further exploration.
Quantifying Anthropogenic Dust Emissions
Anthropogenic land use and land cover change, including local environmental disturbances, moderate rates of wind-driven soil erosion and dust emission. These human-dust cycle interactions impact ecosystems and agricultural production, air quality, human health, biogeochemical cycles, and climate. While the impacts of land use activities and land management on aeolian processes can be profound, the interactions are often complex and assessments of anthropogenic dust loads at all scales remain highly uncertain. Here, we critically review the drivers of anthropogenic dust emission and current evaluation approaches. We then identify and describe opportunities to: (1) develop new conceptual frameworks and interdisciplinary approaches that draw on ecological state-and-transition models to improve the accuracy and relevance of assessments of anthropogenic dust emissions; (2) improve model fidelity and capacity for change detection to quantify anthropogenic impacts on aeolian processes; and (3) enhance field research and monitoring networks to support dust model applications to evaluate the impacts of disturbance processes on local to global-scale wind erosion and dust emissions.
Timing of Tillage as a Driver of Weed Communities
Tillage is a foundational management practice in many cropping systems. Although effective at reducing weed populations and preparing a crop seedbed, tillage and cultivation can also dramatically alter weed community composition. We examined the impact of soil tillage timing on weed community structure at four sites across the northeastern United States. Soil was tilled every 2 wk throughout the growing season (late April to late September 2013), and weed seedling density was quantified by species 6 wk after each tillage event. We used a randomized complete block design with four replicates for each tillage-timing treatment; a total of 196 plots were sampled. The timing of tillage was an important factor in shaping weed community composition and structure at all sites. We identified three main periods of tillage timing that resulted in similar communities. Across all sites, total weed density tended to be greatest and weed evenness tended to be lowest when soils were tilled early in the growing season. From the earliest to latest group of timings, total abundance decreased on average from 428±393 to 159±189 plants m-2, and evenness increased from 0.53±0.25 to 0.72±0.20. The effect of tillage timing on weed species richness varied by site. Our results show that tillage timing affects weed community structure, suggesting that farmers can manage weed communities and the potential for weed interference by adjusting the timing of their tillage and cropping practices.
Vertical tillage may result in non-compliance
NASHVILLE, Tenn. Since the mid-80's, many Tennessee producers have implemented a no-till system on their land. According to TN NRCS, it may not fit into certain conservation systems at all.