Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
158 result(s) for "Shah, Nigam H."
Sort by:
Implementing Machine Learning in Health Care — Addressing Ethical Challenges
We need to consider the ethical challenges inherent in implementing machine learning in health care if its benefits are to be realized. Some of these challenges are straightforward, whereas others have less obvious risks but raise broader ethical concerns.
Proton Pump Inhibitor Usage and the Risk of Myocardial Infarction in the General Population
Proton pump inhibitors (PPIs) have been associated with adverse clinical outcomes amongst clopidogrel users after an acute coronary syndrome. Recent pre-clinical results suggest that this risk might extend to subjects without any prior history of cardiovascular disease. We explore this potential risk in the general population via data-mining approaches. Using a novel approach for mining clinical data for pharmacovigilance, we queried over 16 million clinical documents on 2.9 million individuals to examine whether PPI usage was associated with cardiovascular risk in the general population. In multiple data sources, we found gastroesophageal reflux disease (GERD) patients exposed to PPIs to have a 1.16 fold increased association (95% CI 1.09-1.24) with myocardial infarction (MI). Survival analysis in a prospective cohort found a two-fold (HR = 2.00; 95% CI 1.07-3.78; P = 0.031) increase in association with cardiovascular mortality. We found that this association exists regardless of clopidogrel use. We also found that H2 blockers, an alternate treatment for GERD, were not associated with increased cardiovascular risk; had they been in place, such pharmacovigilance algorithms could have flagged this risk as early as the year 2000. Consistent with our pre-clinical findings that PPIs may adversely impact vascular function, our data-mining study supports the association of PPI exposure with risk for MI in the general population. These data provide an example of how a combination of experimental studies and data-mining approaches can be applied to prioritize drug safety signals for further investigation.
Improving palliative care with deep learning
Background Access to palliative care is a key quality metric which most healthcare organizations strive to improve. The primary challenges to increasing palliative care access are a combination of physicians over-estimating patient prognoses, and a shortage of palliative staff in general. This, in combination with treatment inertia can result in a mismatch between patient wishes, and their actual care towards the end of life. Methods In this work, we address this problem, with Institutional Review Board approval, using machine learning and Electronic Health Record (EHR) data of patients. We train a Deep Neural Network model on the EHR data of patients from previous years, to predict mortality of patients within the next 3-12 month period. This prediction is used as a proxy decision for identifying patients who could benefit from palliative care. Results The EHR data of all admitted patients are evaluated every night by this algorithm, and the palliative care team is automatically notified of the list of patients with a positive prediction. In addition, we present a novel technique for decision interpretation, using which we provide explanations for the model’s predictions. Conclusion The automatic screening and notification saves the palliative care team the burden of time consuming chart reviews of all patients, and allows them to take a proactive approach in reaching out to such patients rather then relying on referrals from the treating physicians.
The shaky foundations of large language models and foundation models for electronic health records
The success of foundation models such as ChatGPT and AlphaFold has spurred significant interest in building similar models for electronic medical records (EMRs) to improve patient care and hospital operations. However, recent hype has obscured critical gaps in our understanding of these models’ capabilities. In this narrative review, we examine 84 foundation models trained on non-imaging EMR data (i.e., clinical text and/or structured data) and create a taxonomy delineating their architectures, training data, and potential use cases. We find that most models are trained on small, narrowly-scoped clinical datasets (e.g., MIMIC-III) or broad, public biomedical corpora (e.g., PubMed) and are evaluated on tasks that do not provide meaningful insights on their usefulness to health systems. Considering these findings, we propose an improved evaluation framework for measuring the benefits of clinical foundation models that is more closely grounded to metrics that matter in healthcare.
Developing a delivery science for artificial intelligence in healthcare
Artificial Intelligence (AI) has generated a large amount of excitement in healthcare, mostly driven by the emergence of increasingly accurate machine learning models. However, the promise of AI delivering scalable and sustained value for patient care in the real world setting has yet to be realized. In order to safely and effectively bring AI into use in healthcare, there needs to be a concerted effort around not just the creation, but also the delivery of AI. This AI “delivery science” will require a broader set of tools, such as design thinking, process improvement, and implementation science, as well as a broader definition of what AI will look like in practice, which includes not just machine learning models and their predictions, but also the new systems for care delivery that they enable. The careful design, implementation, and evaluation of these AI enabled systems will be important in the effort to understand how AI can improve healthcare.
Ontology-driven weak supervision for clinical entity classification in electronic health records
In the electronic health record, using clinical notes to identify entities such as disorders and their temporality (e.g. the order of an event relative to a time index) can inform many important analyses. However, creating training data for clinical entity tasks is time consuming and sharing labeled data is challenging due to privacy concerns. The information needs of the COVID-19 pandemic highlight the need for agile methods of training machine learning models for clinical notes. We present Trove, a framework for weakly supervised entity classification using medical ontologies and expert-generated rules. Our approach, unlike hand-labeled notes, is easy to share and modify, while offering performance comparable to learning from manually labeled training data. In this work, we validate our framework on six benchmark tasks and demonstrate Trove’s ability to analyze the records of patients visiting the emergency department at Stanford Health Care for COVID-19 presenting symptoms and risk factors. In the electronic health record, using clinical notes to identify entities such as disorders and their temporality can inform many important analyses. Here, the authors present a framework for weakly supervised entity classification using medical ontologies and expert-generated rules.
Interpretation of biological experiments changes with evolution of the Gene Ontology and its annotations
Gene Ontology (GO) enrichment analysis is ubiquitously used for interpreting high throughput molecular data and generating hypotheses about underlying biological phenomena of experiments. However, the two building blocks of this analysis — the ontology and the annotations — evolve rapidly. We used gene signatures derived from 104 disease analyses to systematically evaluate how enrichment analysis results were affected by evolution of the GO over a decade. We found low consistency between enrichment analyses results obtained with early and more recent GO versions. Furthermore, there continues to be a strong annotation bias in the GO annotations where 58% of the annotations are for 16% of the human genes. Our analysis suggests that GO evolution may have affected the interpretation and possibly reproducibility of experiments over time. Hence, researchers must exercise caution when interpreting GO enrichment analyses and should reexamine previous analyses with the most recent GO version.
Characterizing treatment pathways at scale using the OHDSI network
Observational research promises to complement experimental research by providing large, diverse populations that would be infeasible for an experiment. Observational research can test its own clinical hypotheses, and observational studies also can contribute to the design of experiments and inform the generalizability of experimental research. Understanding the diversity of populations and the variance in care is one component. In this study, the Observational Health Data Sciences and Informatics (OHDSI) collaboration created an international data network with 11 data sources from four countries, including electronic health records and administrative claims data on 250 million patients. All data were mapped to common data standards, patient privacy was maintained by using a distributed model, and results were aggregated centrally. Treatment pathways were elucidated for type 2 diabetes mellitus, hypertension, and depression. The pathways revealed that the world is moving toward more consistent therapy over time across diseases and across locations, but significant heterogeneity remains among sources, pointing to challenges in generalizing clinical trial results. Diabetes favored a single first-line medication, metformin, to a much greater extent than hypertension or depression. About 10% of diabetes and depression patients and almost 25% of hypertension patients followed a treatment pathway that was unique within the cohort. Aside from factors such as sample size and underlying population (academic medical center versus general population), electronic health records data and administrative claims data revealed similar results. Large-scale international observational research is feasible.
Scalable and accurate deep learning with electronic health records
Predictive modeling with electronic health record (EHR) data is anticipated to drive personalized medicine and improve healthcare quality. Constructing predictive statistical models typically requires extraction of curated predictor variables from normalized EHR data, a labor-intensive process that discards the vast majority of information in each patient’s record. We propose a representation of patients’ entire raw EHR records based on the Fast Healthcare Interoperability Resources (FHIR) format. We demonstrate that deep learning methods using this representation are capable of accurately predicting multiple medical events from multiple centers without site-specific data harmonization. We validated our approach using de-identified EHR data from two US academic medical centers with 216,221 adult patients hospitalized for at least 24 h. In the sequential format we propose, this volume of EHR data unrolled into a total of 46,864,534,945 data points, including clinical notes. Deep learning models achieved high accuracy for tasks such as predicting: in-hospital mortality (area under the receiver operator curve [AUROC] across sites 0.93–0.94), 30-day unplanned readmission (AUROC 0.75–0.76), prolonged length of stay (AUROC 0.85–0.86), and all of a patient’s final discharge diagnoses (frequency-weighted AUROC 0.90). These models outperformed traditional, clinically-used predictive models in all cases. We believe that this approach can be used to create accurate and scalable predictions for a variety of clinical scenarios. In a case study of a particular prediction, we demonstrate that neural networks can be used to identify relevant information from the patient’s chart.Artificial intelligence: Algorithm predicts clinical outcomes for hospital inpatientsArtificial intelligence outperforms traditional statistical models at predicting a range of clinical outcomes from a patient’s entire raw electronic health record (EHR). A team led by Alvin Rajkomar and Eyal Oren from Google in Mountain View, California, USA, developed a data processing pipeline for transforming EHR files into a standardized format. They then applied deep learning models to data from 216,221 adult patients hospitalized for at least 24 h each at two academic medical centers, and showed that their algorithm could accurately predict risk of mortality, hospital readmission, prolonged hospital stay and discharge diagnosis. In all cases, the method proved more accurate than previously published models. The authors provide a case study to serve as a proof-of-concept of how such an algorithm could be used in routine clinical practice in the future.
A comparison of approaches to improve worst-case predictive model performance over patient subpopulations
Predictive models for clinical outcomes that are accurate on average in a patient population may underperform drastically for some subpopulations, potentially introducing or reinforcing inequities in care access and quality. Model training approaches that aim to maximize worst-case model performance across subpopulations, such as distributionally robust optimization (DRO), attempt to address this problem without introducing additional harms. We conduct a large-scale empirical study of DRO and several variations of standard learning procedures to identify approaches for model development and selection that consistently improve disaggregated and worst-case performance over subpopulations compared to standard approaches for learning predictive models from electronic health records data. In the course of our evaluation, we introduce an extension to DRO approaches that allows for specification of the metric used to assess worst-case performance. We conduct the analysis for models that predict in-hospital mortality, prolonged length of stay, and 30-day readmission for inpatient admissions, and predict in-hospital mortality using intensive care data. We find that, with relatively few exceptions, no approach performs better, for each patient subpopulation examined, than standard learning procedures using the entire training dataset. These results imply that when it is of interest to improve model performance for patient subpopulations beyond what can be achieved with standard practices, it may be necessary to do so via data collection techniques that increase the effective sample size or reduce the level of noise in the prediction problem.