Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
209 result(s) for "Shahid, Muhammad Adnan"
Sort by:
Biochar improves soil physical characteristics and strengthens root architecture in Muscadine grape (Vitis rotundifolia L.)
BackgroundBiochar is widely assumed as an effective soil amendment. It improves soil structure and fertility, thereby enhancing crop growth and development. There is still a knowledge gap in research on the beneficial impact of biochar on root growth and root architecture in perennial woody plants. Therefore, in our 14-week greenhouse study, pinewood-based biochar was applied as soil amendment for muscadine grape cultivation to investigate its effects on soil physical properties and crop root growth. Muscadine grape cv. Alachua was grown on Ultisols soil mixed with five rates of biochar on weight basis. Soil mixture properties and root attributes were determined.ResultsThe soil bulk density decreased 40% and the total porosity increased 50% by adding 20% biochar into pure sandy soil. The soil water-holding capacity (WHC) of 20% biochar amendment soil was 1.9 times as pure as sandy soil. In addition, the incorporation of biochar did not only ameliorate soil acidity at the beginning but also increased soil pH buffering capacity, providing suitable soil pH a few months after application. Moreover, biochar induced woody plant finer roots development and significantly promoted root length, number of root forks, and crossings, while decreasing root average diameter.ConclusionsPinewood biochar significantly improved soil physical properties by moderating soil thermal properties, buffering soil pH, improving soil WHC, decreasing soil bulk density, and increasing soil porosity. In addition, biochar also strengthened the root architecture by improving root length, number of root forks, and crossings. Furthermore, roots from the amended treatment had longer root length with less average diameter than unamended roots, indicating that biochar may stimulate muscadine fine root development. The incorporation of biochar in soil enhanced woody plant root growth and development improved soil structure in sandy soils. It could potentially be a good strategy to tackle water loss, particularly in sandy soils.
Evaluation of different Maximum Allowable Deficit (MAD) levels for rice under raised bed planting and flat sowing in Pakistan
Efficient water management in rice cultivation is crucial due to global freshwater scarcity and the need for sustainable agriculture. Freshwater scarcity is a growing global concern, and Pakistan, a water-scarce country, faces further reductions in available water. This study examined the effects of different Maximum Allowable Deficit (MAD) levels on rice growth and yield under raised bed and flat sowing methods. The experiment was conducted at the Water Management Research Centre, Faisalabad, Punjab, Pakistan, using a Randomized Complete Block Design with three replications and six treatments. Flat (conventional) and bed sowing methods were compared, with irrigation scheduled at MAD levels of I1 = 0%, I2 = 20%, and I3 = 40% during the 2021 and 2022 rice seasons. Treatments T4(I1) and T5(I2) used 3236 and 3248 m³ ha −1 of water, respectively, compared to T1(I1) and T2(I2) with 4022 and 4040 m³ ha −1 . The highest water productivity was recorded under T4(I1) (2.94 kg m −3 ), with T5(I2) (2.90 kg m −3 ) statistically at par. Bed planting saved 28.06% more water than flat sowing. The current study advances sustainable agriculture by optimizing water use in rice cultivation, showing that raised bed-planting with controlled irrigation enhances water productivity and yield.
Enhancing Postharvest Quality of Blackberries: Impact of Sonicated and Microwave-Assisted Pasteurized Edible Coating Gels at Different Storage Temperatures
Blackberries (Rubus fructicosus L.) are categorized as functional foods, as they are rich in bioactive compounds. Due to limited shelf life and susceptibility to postharvest quality deterioration, it is imperative to investigate postharvest interventions that can prolong the fruit’s quality. This research aimed to develop sonicated and microwave-assisted pasteurized (SMAP) edible gels with citrus peel essential oil (CPEO). Additionally, we aimed to evaluate the effects of different temperatures (4, 20 and 30 °C) on the postharvest quality of the following blackberry treatments:control (C), blanched (B), coated (SMAP) and blanched + coated (B+SMAP). The synergistic effect of B+SMAP coating gels was more effective at maintaining the quality of blackberries after 21 days in storage by inhibiting fruit weight loss by 18% and fruit decay by 65% compared to the control group at 4 °C. The SMAP-coated fruits limited total flavonoid reduction by 23% and total flavanols by 24% when stored at 4 °C after 21 days. The B+SMAP treatment hindered the loss of total phenolic content by 16%, total antioxidant activity by 27% and DPPH radical scavenging activity by 19% under storage at 4 °C for 21 days. We concluded that the SMAP coating gel is an innovative and health-friendly approach for extending the postharvest quality of blackberries during storage.
Scion–Rootstock Interactions Enhance Freezing Stress Resilience in Citrus reticulata Through Integrated Antioxidant Defense and Carbon–Nitrogen Metabolic Adjustments
Frequent and increasingly severe freezing events threaten citrus production in northern Florida, underscoring the need for strategies that enhance freezing resilience in citrus cultivars. Grafting scions onto tolerant rootstocks provides a physiologically integrative approach to improve stress tolerance. This study aims to elucidate how these interactions modulate physiological and metabolic responses under freezing stress, thereby identifying mechanisms that contribute to enhanced freeze resilience in citrus. Here, we grafted Citrus reticulata (cv. UF-950) onto eight rootstocks (Bitters, Blue-1, C-146, Sour Orange, UFR07TC, UFR09TC, UFR5, and US942) to evaluate scion–rootstock interactions under normal (20 °C) and freezing (−6 °C) conditions. Freezing stress caused a sharp increase in oxidative stress markers, lipid peroxidation, and membrane damage while reducing photosynthetic performance across most combinations. Antioxidant capacity, osmolyte accumulation, and carbon–nitrogen metabolic responses varied significantly among rootstocks, revealing strong genotype-dependent modulation of scion physiology. Among the tested combinations, UF-950 grafted onto UFR5 displayed the highest freezing tolerance, characterized by robust activation of antioxidant enzymes, elevated proline and glycine betaine accumulation, reduced oxidative damage, and sustained carbon–nitrogen metabolic fluxes under freezing stress. These results demonstrate that rootstock genotype governs the extent of scion defense activation and metabolic homeostasis under freezing conditions. Our findings identify UFR5 as a promising rootstock for enhancing freezing resilience in citrus and provide mechanistic insight into how scion–rootstock interaction orchestrates integrative stress tolerance pathways. Future work should focus on multi-omics dissection of rootstock-mediated signaling networks and long-term field validation to optimize rootstock selection for enhanced cold resilience under variable climatic conditions.
Insights into the Interactions among Roots, Rhizosphere, and Rhizobacteria for Improving Plant Growth and Tolerance to Abiotic Stresses: A Review
Abiotic stresses, such as drought, salinity, heavy metals, variations in temperature, and ultraviolet (UV) radiation, are antagonistic to plant growth and development, resulting in an overall decrease in plant yield. These stresses have direct effects on the rhizosphere, thus severely affect the root growth, and thereby affecting the overall plant growth, health, and productivity. However, the growth-promoting rhizobacteria that colonize the rhizosphere/endorhizosphere protect the roots from the adverse effects of abiotic stress and facilitate plant growth by various direct and indirect mechanisms. In the rhizosphere, plants are constantly interacting with thousands of these microorganisms, yet it is not very clear when and how these complex root, rhizosphere, and rhizobacteria interactions occur under abiotic stresses. Therefore, the present review attempts to focus on root–rhizosphere and rhizobacterial interactions under stresses, how roots respond to these interactions, and the role of rhizobacteria under these stresses. Further, the review focuses on the underlying mechanisms employed by rhizobacteria for improving root architecture and plant tolerance to abiotic stresses.
Interaction between bacterial endophytes and host plants
Endophytic bacteria are mainly present in the plant’s root systems. Endophytic bacteria improve plant health and are sometimes necessary to fight against adverse conditions. There is an increasing trend for the use of bacterial endophytes as bio-fertilizers. However, new challenges are also arising regarding the management of these newly discovered bacterial endophytes. Plant growth-promoting bacterial endophytes exist in a wide host range as part of their microbiome, and are proven to exhibit positive effects on plant growth. Endophytic bacterial communities within plant hosts are dynamic and affected by abiotic/biotic factors such as soil conditions, geographical distribution, climate, plant species, and plant-microbe interaction at a large scale. Therefore, there is a need to evaluate the mechanism of bacterial endophytes’ interaction with plants under field conditions before their application. Bacterial endophytes have both beneficial and harmful impacts on plants but the exact mechanism of interaction is poorly understood. A basic approach to exploit the potential genetic elements involved in an endophytic lifestyle is to compare the genomes of rhizospheric plant growth-promoting bacteria with endophytic bacteria. In this mini-review, we will be focused to characterize the genetic diversity and dynamics of endophyte interaction in different host plants.
Melatonin Improves Drought Stress Tolerance of Tomato by Modulating Plant Growth, Root Architecture, Photosynthesis, and Antioxidant Defense System
Tomato is an important vegetable that is highly sensitive to drought (DR) stress which impairs the development of tomato seedlings. Recently, melatonin (ME) has emerged as a nontoxic, regulatory biomolecule that regulates plant growth and enhances the DR tolerance mechanism in plants. The present study was conducted to examine the defensive role of ME in photosynthesis, root architecture, and the antioxidant enzymes’ activities of tomato seedlings subjected to DR stress. Our results indicated that DR stress strongly suppressed growth and biomass production, inhibited photosynthesis, negatively affected root morphology, and reduced photosynthetic pigments in tomato seedlings. Per contra, soluble sugars, proline, and ROS (reactive oxygen species) were suggested to be improved in seedlings under DR stress. Conversely, ME (100 µM) pretreatment improved the detrimental-effect of DR by restoring chlorophyll content, root architecture, gas exchange parameters and plant growth attributes compared with DR-group only. Moreover, ME supplementation also mitigated the antioxidant enzymes [APX (ascorbate peroxidase), CAT (catalase), DHAR (dehydroascorbate reductase), GST (glutathione S-transferase), GR (glutathione reductase), MDHAR (monodehydroascorbate reductase), POD (peroxidase), and SOD (superoxide dismutase)], non-enzymatic antioxidant [AsA (ascorbate), DHA (dehydroascorbic acid), GSH (glutathione), and GSSG, (oxidized glutathione)] activities, reduced oxidative damage [EL (electrolyte leakage), H2O2 (hydrogen peroxide), MDA (malondialdehyde), and O2•− (superoxide ion)] and osmoregulation (soluble sugars and proline) of tomato seedlings, by regulating gene expression for SOD, CAT, APX, GR, POD, GST, DHAR, and MDHAR. These findings determine that ME pretreatment could efficiently improve the seedlings growth, root characteristics, leaf photosynthesis and antioxidant machinery under DR stress and thereby increasing the seedlings’ adaptability to DR stress.
Insights into the Physiological and Biochemical Impacts of Salt Stress on Plant Growth and Development
Climate change is causing soil salinization, resulting in crop losses throughout the world. The ability of plants to tolerate salt stress is determined by multiple biochemical and molecular pathways. Here we discuss physiological, biochemical, and cellular modulations in plants in response to salt stress. Knowledge of these modulations can assist in assessing salt tolerance potential and the mechanisms underlying salinity tolerance in plants. Salinity-induced cellular damage is highly correlated with generation of reactive oxygen species, ionic imbalance, osmotic damage, and reduced relative water content. Accelerated antioxidant activities and osmotic adjustment by the formation of organic and inorganic osmolytes are significant and effective salinity tolerance mechanisms for crop plants. In addition, polyamines improve salt tolerance by regulating various physiological mechanisms, including rhizogenesis, somatic embryogenesis, maintenance of cell pH, and ionic homeostasis. This research project focuses on three strategies to augment salinity tolerance capacity in agricultural crops: salinity-induced alterations in signaling pathways; signaling of phytohormones, ion channels, and biosensors; and expression of ion transporter genes in crop plants (especially in comparison to halophytes).
The Addition of Selenium to the Nutrient Solution Decreases Cadmium Toxicity in Pepper Plants Grown under Hydroponic Conditions
Cadmium is absorbed by plants rapidly and without control through the same channels as other essential metals, interfering with their transport and utilization. Many studies have shown that selenium could be utilized as a way to avoid this unwanted transport and other negative effects of Cd. For this reason, the present research study was conducted with four treatments (−Cd/−Se, +Cd/−Se, +Cd/+SeF, and +Cd/+SeR) to determine the type of application of Se that is best (foliarly and/or via the root) as regards the reduction of the toxic effects of Cd on plants. Our results showed that the Cd excess in the nutrient solution resulted in a decrease in the total dry biomass of the plants grown under these conditions, and this decrease was due to the reduction of the growth of the shoot (48% +Cd/−Se, 45% +Cd/+SeF, and 38% +Cd/+SeR, relative to −Cd/−Se). This reduction in growth was due to: (i) the toxicity of Cd itself and (ii) the nutritional disequilibrium suffered by the plants. It seems that under hydroponic conditions, the addition of Se to the nutrient solution, and therefore its absorption through the roots (lower antioxidant activity, superoxide dismutase, H2O2 concentration and higher catalase activity), greatly delayed and reduced the toxic effects of Cd on the pepper plants, as opposed to the foliar application of this element.
Improving Wheat Yield Prediction with Multi-Source Remote Sensing Data and Machine Learning in Arid Regions
Wheat (Triticum aestivum L.) is one of the world’s primary food crops, and timely and accurate yield prediction is essential for ensuring food security. There has been a growing use of remote sensing, climate data, and their combination to estimate yields, but the optimal indices and time window for wheat yield prediction in arid regions remain unclear. This study was conducted to (1) assess the performance of widely recognized remote sensing indices to predict wheat yield at different growth stages, (2) evaluate the predictive accuracy of different yield predictive machine learning models, (3) determine the appropriate growth period for wheat yield prediction in arid regions, and (4) evaluate the impact of climate parameters on model accuracy. The vegetation indices, widely recognized due to their proven effectiveness, used in this study include the Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), and the Atmospheric Resistance Vegetation Index (ARVI). Moreover, four machine learning models, viz. Decision Trees (DTs), Random Forest (RF), Gradient Boosting (GB), and Bagging Trees (BTs), were evaluated to assess their predictive accuracy for wheat yield in the arid region. The whole wheat growth period was divided into three time windows: tillering to grain filling (December 15–March), stem elongation to grain filling (January 15–March), and heading to grain filling (February–March 15). The model was evaluated and developed in the Google Earth Engine (GEE), combining climate and remote sensing data. The results showed that the RF model with ARVI could accurately predict wheat yield at the grain filling and the maturity stages in arid regions with an R2 > 0.75 and yield error of less than 10%. The grain filling stage was identified as the optimal prediction window for wheat yield in arid regions. While RF with ARVI delivered the best results, GB with EVI showed slightly lower precision but still outperformed other models. It is concluded that combining multisource data and machine learning models is a promising approach for wheat yield prediction in arid regions.