Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
245
result(s) for
"Shahzad, Tariq"
Sort by:
The role of blockchain to secure internet of medical things
2024
This study explores integrating blockchain technology into the Internet of Medical Things (IoMT) to address security and privacy challenges. Blockchain’s transparency, confidentiality, and decentralization offer significant potential benefits in the healthcare domain. The research examines various blockchain components, layers, and protocols, highlighting their role in IoMT. It also explores IoMT applications, security challenges, and methods for integrating blockchain to enhance security. Blockchain integration can be vital in securing and managing this data while preserving patient privacy. It also opens up new possibilities in healthcare, medical research, and data management. The results provide a practical approach to handling a large amount of data from IoMT devices. This strategy makes effective use of data resource fragmentation and encryption techniques. It is essential to have well-defined standards and norms, especially in the healthcare sector, where upholding safety and protecting the confidentiality of information are critical. These results illustrate that it is essential to follow standards like HIPAA, and blockchain technology can help ensure these criteria are met. Furthermore, the study explores the potential benefits of blockchain technology for enhancing inter-system communication in the healthcare industry while maintaining patient privacy protection. The results highlight the effectiveness of blockchain’s consistency and cryptographic techniques in combining identity management and healthcare data protection, protecting patient privacy and data integrity. Blockchain is an unchangeable distributed ledger system. In short, the paper provides important insights into how blockchain technology may transform the healthcare industry by effectively addressing significant challenges and generating legal, safe, and interoperable solutions. Researchers, doctors, and graduate students are the audience for our paper.
Journal Article
Identification of kidney stones in KUB X-ray images using VGG16 empowered with explainable artificial intelligence
by
Shahzad, Tariq
,
Abbas, Sagheer
,
Ahmed, Fahad
in
639/705/117
,
692/699/1585
,
Artificial Intelligence
2024
A kidney stone is a solid formation that can lead to kidney failure, severe pain, and reduced quality of life from urinary system blockages. While medical experts can interpret kidney-ureter-bladder (KUB) X-ray images, specific images pose challenges for human detection, requiring significant analysis time. Consequently, developing a detection system becomes crucial for accurately classifying KUB X-ray images. This article applies a transfer learning (TL) model with a pre-trained VGG16 empowered with explainable artificial intelligence (XAI) to establish a system that takes KUB X-ray images and accurately categorizes them as kidney stones or normal cases. The findings demonstrate that the model achieves a testing accuracy of 97.41% in identifying kidney stones or normal KUB X-rays in the dataset used. VGG16 model delivers highly accurate predictions but lacks fairness and explainability in their decision-making process. This study incorporates the Layer-Wise Relevance Propagation (LRP) technique, an explainable artificial intelligence (XAI) technique, to enhance the transparency and effectiveness of the model to address this concern. The XAI technique, specifically LRP, increases the model's fairness and transparency, facilitating human comprehension of the predictions. Consequently, XAI can play an important role in assisting doctors with the accurate identification of kidney stones, thereby facilitating the execution of effective treatment strategies.
Journal Article
Transformer-inspired training principles based breast cancer prediction: combining EfficientNetB0 and ResNet50
2025
Breast cancer is a leading killer and has been deepened by COVID-19, which affected diagnosis and treatment services. The absence of a rapid, efficient, accurate diagnostic tool remains a pressing issue for this severe disease. Thus, it is still possible to encounter issues concerning diagnostic accuracy and utilization of errors in the sphere of machine learning, deep learning, and transfer learning models. This paper presents a new model combining EfficientNetB0 and ResNet50 to improve the classification of breast histopathology images into IDC and non-IDC classes. The implementation steps, it include resizing all the images to be of a standard size of 128*128 pixels and then performing normalization to enhance the learning model. EfficientNetB0 is selected for its efficient yet effective performance while ResNet50 employs deep residual connections to overcome the vanishing gradient problem. The proposed model that incorporates some of the characteristics from both architectures turns out to be very resilient and accurate in classification. The model demonstrates superior performance with an accuracy of 94%, a Mean Absolute Error (MAE) of 0.0628, and a Matthews Correlation Coefficient (MCC) of 0.8690. These results outperform previous baselines and show that the model performs well in achieving a good trade-off between precision and recall. The comparison with the related works demonstrates the superiority of the proposed ensemble approach in terms of accuracy and complexity, which makes it efficient for practical breast cancer diagnosis and screening.
Journal Article
Signature-based intrusion detection using machine learning and deep learning approaches empowered with fuzzy clustering
2025
Network security is crucial in today’s digital world, since there are multiple ongoing threats to sensitive data and vital infrastructure. The aim of this study to improve network security by combining methods for instruction detection from machine learning (ML) and deep learning (DL). Attackers have tried to breach security systems by accessing networks and obtaining sensitive information.Intrusion detection systems (IDSs) are one of the significant aspect of cybersecurity that involve the monitoring and analysis, with the intention of identifying and reporting of dangerous activities that would help to prevent the attack.Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Random Forest (RF), Decision Tree (DT), Long Short-Term Memory (LSTM), and Artificial Neural Network (ANN) are the vector figures incorporated into the study through the results. These models are subjected to various test to established the best results on the identification and prevention of network violation. Based on the obtained results, it can be stated that all the tested models are capable of organizing data originating from network traffic. thus, recognizing the difference between normal and intrusive behaviors, models such as SVM, KNN, RF, and DT showed effective results. Deep learning models LSTM and ANN rapidly find long-term and complex pattern in network data. It is extremely effective when dealing with complex intrusions since it is characterised by high precision, accuracy and recall.Based on our study, SVM and Random Forest are considered promising solutions for real-world IDS applications because of their versatility and explainability. For the companies seeking IDS solutions which are reliable and at the same time more interpretable, these models can be promising. Additionally, LSTM and ANN, with their ability to catch successive conditions, are suitable for situations involving nuanced, advancing dangers.
Journal Article
A fine-tuned convolutional neural network model for accurate Alzheimer’s disease classification
2025
Alzheimer’s disease (AD) is one of the primary causes of dementia in the older population, affecting memories, cognitive levels, and the ability to accomplish simple activities gradually. Timely intervention and efficient control of the disease prove to be possible through early diagnosis. The conventional machine learning models designed for AD detection work well only up to a certain point. They usually require a lot of labeled data and do not transfer well to new datasets. Additionally, they incur long periods of retraining. Relatively powerful models of deep learning, however, also are very demanding in computational resources and data. In light of these, we put forward a new way of diagnosing AD using magnetic resonance imaging (MRI) scans and transfer learned convolutional neural networks (CNN). Transfer learning makes it easier to reduce the costs involved in training and improves performance because it allows the use of models which have been trained previously and which generalize very well even when there is very little training data available. In this research, we used three different pre-trained CNN based architectures (AlexNet, GoogleNet, and MobileNetV2) each implemented with several solvers (e.g. Adam, Stochastic Gradient Descent or SGD, and Root Mean Square Propagation or RMSprop). Our model achieved impressive classification results of 99.4% on the Kaggle MRI dataset as well as 98.2% on the Open Access Series of Imaging Studies (OASIS) database. Such results serve to demonstrate how transfer learning is an effective solution to the issues related to conventional models that limits the accuracy of diagnosis of AD, thus enabling their earlier and more accurate diagnosis. This would in turn benefit the patients by improving the treatment management and providing insights on the disease progression.
Journal Article
Multidisciplinary cancer disease classification using adaptive FL in healthcare industry 5.0
2024
Emerging Industry 5.0 designs promote artificial intelligence services and data-driven applications across multiple places with varying ownership that need special data protection and privacy considerations to prevent the disclosure of private information to outsiders. Due to this, federated learning offers a method for improving machine-learning models without accessing the train data at a single manufacturing facility. We provide a self-adaptive framework for federated machine learning of healthcare intelligent systems in this research. Our method takes into account the participating parties at various levels of healthcare ecosystem abstraction. Each hospital trains its local model internally in a self-adaptive style and transmits it to the centralized server for universal model optimization and communication cycle reduction. To represent a multi-task optimization issue, we split the dataset into as many subsets as devices. Each device selects the most advantageous subset for every local iteration of the model. On a training dataset, our initial study demonstrates the algorithm's ability to converge various hospital and device counts. By merging a federated machine-learning approach with advanced deep machine-learning models, we can simply and accurately predict multidisciplinary cancer diseases in the human body. Furthermore, in the smart healthcare industry 5.0, the results of federated machine learning approaches are used to validate multidisciplinary cancer disease prediction. The proposed adaptive federated machine learning methodology achieved 90.0%, while the conventional federated learning approach achieved 87.30%, both of which were higher than the previous state-of-the-art methodologies for cancer disease prediction in the smart healthcare industry 5.0.
Journal Article
Enhancing patient healthcare with mobile edge computing and 5G: challenges and solutions for secure online health tools
by
Shahzad, Tariq
,
Ghadi, Yazeed Yasin
,
Ouahada, Khmaies
in
5G mobile communication
,
Challenges
,
Computer Communication Networks
2024
Patient-focused healthcare applications are important to patients because they offer a range of advantages that add value and improve the overall healthcare experience. The 5G networks, along with Mobile Edge Computing (MEC), can greatly transform healthcare applications, which in turn improves patient care. MEC plays an important role in the healthcare of patients by bringing computing resources to the edge of the network. It becomes part of an IoT system within healthcare that brings data closer to the core, speeds up decision-making, lowers latency, and improves the overall quality of care. While the usage of MEC and 5G networks is beneficial for healthcare purposes, there are some issues and difficulties that should be solved for the efficient introduction of this technological pair into healthcare. One of the critical issues that blockchain technology can help to overcome is the challenge faced by MEC in realizing the most potential applications involving IoT medical devices. This article presents a comprehensive literature review on IoT-based healthcare devices, which provide real-time solutions to patients, and discusses some major contributions made by MEC and 5G in the healthcare industry. The paper also discusses some of the limitations that 5G and MEC networks have in the IoT medical devices area, especially in the field of decentralized computing solutions. For this reason, the readership intended for this article is not only researchers but also graduate students.
Journal Article
A comprehensive review of large language models: issues and solutions in learning environments
by
Shahzad, Tariq
,
Ahmad, Wasim
,
Ouahada, Khmaies
in
Artificial intelligence
,
Automation
,
Distance learning
2025
A significant advancement in artificial intelligence is the development of large language models (LLMs). Despite opposition and explicit bans by some authorities, LLMs continue to play a transformative role, particularly in education, by improving language understanding and generation capabilities. This study explores LLMs’ types, history, and training processes, alongside their application in education, including digital and higher education settings. A novel theoretical framework is proposed to guide the integration of LLMs into education, addressing key challenges such as personalization, ethical concerns, and adaptability. Furthermore, the study presents practical case studies and solutions to barriers, such as data privacy and bias, offering insights into their role in enhancing the teaching–learning process. By providing a systematic analysis and proposing a structured framework, this study advances current knowledge and highlights the significant potential of LLMs in revolutionizing education.
Journal Article