Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
8 result(s) for "Shaifullah, Golam M."
Sort by:
Periodic interstellar scintillation variations of PSRs J0613–0200 and J0636+5128 associated with the Local Bubble shell
Annual variations of interstellar scintillation can be modelled to constrain parameters of the ionized interstellar medium. If a pulsar is in a binary system, then investigating the orbital parameters is possible through analysis of the orbital variation of scintillation. In observations carried out from 2011 to 2020 by the European Pulsar Timing Array radio telescopes, PSRs J0613–0200 and J0636+5128 show strong annual variations in their scintillation velocity, while the former additionally exhibits an orbital fluctuation. Bayesian theory and Markov-chain-Monte-Carlo methods are used to interpret these periodic variations. We assume a thin and anisotropic scattering screen model, and discuss the mildly and extremely anisotropic scattering cases. PSR J0613–0200 is best described by mildly anisotropic scattering, while PSR J0636+5128 exhibits extremely anisotropic scattering. We measure the distance, velocity, and degree of anisotropy of the scattering screen for our two pulsars, finding that scattering screen distances from Earth for PSRs J0613–0200 and J0636+5128 are 316 −20 +28 pc and 262 −38 +96 pc, respectively. The positions of these scattering screens are coincident with the shell of the Local Bubble towards both pulsars. These associations add to the growing evidence of the Local Bubble shell as a dominant region of scattering along many sightlines.
Validation of global ionospheric models using long-term observations of pulsar Faraday rotation with the LOFAR radio telescope
Broad band pulsar radiation can be effectively used to monitor the properties of the magneto-ionic media through which it propagates. Faraday rotation calculated from polarised pulsar observations provides an integrated product of electron densities and the line-of-sight component of the magnetic field in the intervening plasma. In particular, a time-variable effect mainly associated with the rapidly changing column density of the Earth’s ionosphere and plasmasphere heavily dominates the observed Faraday rotation of pulsar radiation. In this work, we aim to carry out a performance test of three GNSS-based models of the ionosphere using observations of PSR J0332+5434 taken with the LOw Frequency ARray (LOFAR). As it was shown in Porayko et al. (Month Not Roy Astron Soc 483(3):4100–4113, 2019. https://doi.org/10.1093/mnras/sty3324 . arXiv:1812.01463 ), the conventional single layer model (SLM), which assumes that the ionosphere is a thin slab at a fixed effective height, is not capable of fully accounting for the ionospheric Faraday rotation in pulsar data. The simplified physics of the SLM is upgraded within IRI-Plas (International Reference Ionosphere and Plasmasphere) extended SLM and the dual-layer voxel TOmographic Model of the Ionosphere (TOMION), both of which partially account for the thickness and vertical dynamics of the terrestrial plasma. Although the last two improve the reconstruction of the ionospheric Faraday rotation, none of the considered models completely purge the observed residual variations. With this study, we show that the long term LOFAR observations of Faraday rotation of pulsars provide an excellent tool to test and improve models of the magneto-ionic content of the Earth’s atmosphere.
Long-term scintillation studies of EPTA pulsars. I. Observations and basic results
Interstellar scintillation analysis of pulsars allows us to probe the small-scale distribution and inhomogeneities of the ionized interstellar medium. Our priority is to present the data set and the basic measurements of scintillation parameters of pulsars employing long-term scintillation observations carried out from 2011 January to 2020 August by the European Pulsar Timing Array radio telescopes in the 21-cm and 11-cm bands. Additionally, we aim to identify future possible lines of study using this long-term scintillation dataset. We present the long-term time series of \\(\\nu_{\\rm d}\\) and \\(\\tau_{\\rm d}\\) for 13 pulsars. Sanity-checks and comparisons indicate that the scintillation parameters of our work and previously published works are mostly consistent. For two pulsars, PSRs~J1857+0943 and J1939+2134, we were able to obtain measurements of the \\(\\nu_{\\rm d}\\) at both bands, which allows us to derive the time series of frequency scaling indices with a mean and a standard deviation of 2.82\\(\\pm\\)1.95 and 3.18\\(\\pm\\)0.60, respectively. We found some interesting features which will be studied in more detail in subsequent papers in this series: (i) in the time series of PSR~J1939+2134, where the scintillation bandwidth sharply increases or decreases associated with a sharp change of dispersion measure; (ii) PSR~J0613\\(-\\)0200 and PSR~J0636+5126 show a strong annual variation in the time series of the \\(\\tau_{\\rm d}\\); (iii) PSR~J1939+2134 shows a weak anti-correlation between scintillation timescale and dispersion in WSRT data.
Noise analysis of the Indian Pulsar Timing Array data release I
The Indian Pulsar Timing Array (InPTA) collaboration has recently made its first official data release (DR1) for a sample of 14 pulsars using 3.5 years of uGMRT observations. We present the results of single-pulsar noise analysis for each of these 14 pulsars using the InPTA DR1. For this purpose, we consider white noise, achromatic red noise, dispersion measure (DM) variations, and scattering variations in our analysis. We apply Bayesian model selection to obtain the preferred noise models among these for each pulsar. For PSR J1600\\(-\\)3053, we find no evidence of DM and scattering variations, while for PSR J1909\\(-\\)3744, we find no significant scattering variations. Properties vary dramatically among pulsars. For example, we find a strong chromatic noise with chromatic index \\(\\sim\\) 2.9 for PSR J1939+2134, indicating the possibility of a scattering index that doesn't agree with that expected for a Kolmogorov scattering medium consistent with similar results for millisecond pulsars in past studies. Despite the relatively short time baseline, the noise models broadly agree with the other PTAs and provide, at the same time, well-constrained DM and scattering variations.
Pulsar Scintillation Studies with LOFAR: II. Dual-frequency scattering study of PSR J0826+2637 with LOFAR and NenuFAR
Interstellar scattering (ISS) of radio pulsar emission can be used as a probe of the ionised interstellar medium (IISM) and causes corruptions in pulsar timing experiments. Two types of ISS phenomena (intensity scintillation and pulse broadening) are caused by electron density fluctuations on small scales (< 0.01 AU). Theory predicts that these are related, and both have been widely employed to study the properties of the IISM. Larger scales (\\(\\sim\\)1-100\\,AU) cause measurable changes in dispersion and these can be correlated with ISS observations to estimate the fluctuation spectrum over a very wide scale range. IISM measurements can often be modeled by a homogeneous power-law spatial spectrum of electron density with the Kolmogorov (\\(-11/3\\)) spectral exponent. Here we aim to test the validity of using the Kolmogorov exponent with PSR~J0826+2637. We do so using observations of intensity scintillation, pulse broadening and dispersion variations across a wide fractional bandwidth (20 -- 180\\,MHz). We present that the frequency dependence of the intensity scintillation in the high frequency band matches the expectations of a Kolmogorov spectral exponent but the pulse broadening in the low frequency band does not change as rapidly as predicted with this assumption. We show that this behavior is due to an inhomogeneity in the scattering region, specifically that the scattering is dominated by a region of transverse size \\(\\sim\\)40\\,AU. The power spectrum of the electron density, however, maintains the Kolmogorov spectral exponent from spatial scales of 5\\(\\times10^{-6}\\)\\,AU to \\(\\sim\\)100\\,AU.
Periodic interstellar scintillation variations of PSRs~J0613\\(-\\)0200 and J0636+5128 associated with the Local Bubble shell
Annual variations of interstellar scintillation can be modelled to constrain parameters of the ionized interstellar medium. If a pulsar is in a binary system, then investigating the orbital parameters is possible through analysis of the orbital variation of scintillation. In observations carried out from 2011 January to 2020 August by the European Pulsar Timing Array radio telescopes, PSRs~J0613\\(-\\)0200 and J0636+5128 show strong annual variations in their scintillation velocity, while the former additionally exhibits an orbital fluctuation. Bayesian theory and Markov-chain-Monte-Carlo methods are used to interpret these periodic variations. We assume a thin and anisotropic scattering screen model, and discuss the mildly and extremely anisotropic scattering cases. PSR~J0613\\(-\\)0200 is best described by mildly anisotropic scattering, while PSR~J0636+5128 exhibits extremely anisotropic scattering. We measure the distance, velocity and degree of anisotropy of the scattering screen for our two pulsars, finding that scattering screen distances from Earth for PSRs~J0613\\(-\\)0200 and J0636+5128 are 316\\(^{+28}_{-20}\\)\\,pc and 262\\(^{+96}_{-38}\\)\\,pc, respectively. The positions of these scattering screens are coincident with the shell of the Local Bubble towards both pulsars. These associations add to the growing evidence of the Local Bubble shell as a dominant region of scattering along many sightlines.
The MeerKAT Pulsar Timing Array: The first search for gravitational waves with the MeerKAT radio telescope
Pulsar Timing Arrays search for nanohertz-frequency gravitational waves by regularly observing ensembles of millisecond pulsars over many years to look for correlated timing residuals. Recently the first evidence for a stochastic gravitational wave background has been presented by the major Arrays, with varying levels of significance (\\(\\sim\\)2-4\\(\\sigma\\)). In this paper we present the results of background searches with the MeerKAT Pulsar Timing Array. Although of limited duration (4.5 yr), the \\(\\sim\\) 250,000 arrival times with a median error of just \\(3 \\mu\\)s on 83 pulsars make it very sensitive to spatial correlations. Detection of a gravitational wave background requires careful modelling of noise processes to ensure that any correlations represent a fit to the underlying background and not other misspecified processes. Under different assumptions about noise processes we can produce either what appear to be compelling Hellings-Downs correlations of high significance (3-3.4\\(\\sigma\\)) with a spectrum close to that which is predicted, or surprisingly, under slightly different assumptions, ones that are insignificant. This appears to be related to the fact that many of the highest precision MeerKAT Pulsar Timing Array pulsars are in close proximity and dominate the detection statistics. The sky-averaged characteristic strain amplitude of the correlated signal in our most significant model is \\(h_{c, {\\rm yr}} = 7.5^{+0.8}_{-0.9} \\times 10^{-15}\\) measured at a spectral index of \\(\\alpha=-0.26\\), decreasing to \\(h_{c, {\\rm yr}} = 4.8^{+0.8}_{-0.9} \\times 10^{-15}\\) when assessed at the predicted \\(\\alpha=-2/3\\). These data will be valuable as the International Pulsar Timing Array project explores the significance of gravitational wave detections and their dependence on the assumed noise models.
The MeerKAT Pulsar Timing Array: The \\(4.5\\)-year data release and the noise and stochastic signals of the millisecond pulsar population
Pulsar timing arrays are ensembles of regularly observed millisecond pulsars timed to high precision. Each pulsar in an array could be affected by a suite of noise processes, most of which are astrophysically motivated. Analysing them carefully can be used to understand these physical processes. However, the primary purpose of these experiments is to detect signals that are common to all pulsars, in particular signals associated with a stochastic gravitational wave background. To detect this, it is paramount to appropriately characterise other signals that may otherwise impact array sensitivity or cause a spurious detection. Here we describe the second data release and first detailed noise analysis of the pulsars in the MeerKAT Pulsar Timing Array, comprising high-cadence and high-precision observations of \\(83\\) millisecond pulsars over \\(4.5\\) years. We use this analysis to search for a common signal in the data, finding a process with an amplitude of \\(\\log_{10}\\mathrm{A_{CURN}} = -14.25^{+0.21}_{-0.36}\\) and spectral index \\(\\gamma_\\mathrm{CURN} = 3.60^{+1.31}_{-0.89}\\). Fixing the spectral index at the value predicted for a background produced by the inspiral of binary supermassive black holes, we measure the amplitude to be \\(\\log_{10}\\mathrm{A_{CURN}} = -14.28^{+0.21}_{-0.21}\\) at a significance expressed as a Bayes factor of \\(\\ln(\\mathcal{B}) = 4.46\\). Under both assumptions, the amplitude that we recover is larger than those reported by other PTA experiments. We use the results of this analysis to forecast our sensitivity to a gravitational wave background possessing the spectral properties of the common signal we have measured.