Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
13 result(s) for "Shakya, Sonam"
Sort by:
Crystal Structure, Topology, DFT and Hirshfeld Surface Analysis of a Novel Charge Transfer Complex (L3) of Anthraquinone and 4-{(anthracen-9-yl)meth-yl amino}-benzoic Acid (L2) Exhibiting Photocatalytic Properties: An Experimental and Theoretical Approach
Here, we report a facile route to the synthesizing of a new donor-acceptor complex, L3, using 4-{[(anthracen-9-yl)meth-yl] amino}-benzoic acid, L2, as donor moiety with anthraquinone as an acceptor moiety. The formation of donor-acceptor complex L3 was facilitated via H-bonding and characterized by single-crystal X-ray diffraction. The X-ray diffraction results confirmed the synthesized donor-acceptor complex L3 crystal belongs to the triclinic system possessing the P-1 space group. The complex L3 was also characterized by other spectral techniques, viz., FTIR and UV absorption spectroscopy, which confirmed the formation of new bonds between donor L2 moiety and acceptor anthraquinone molecule. The crystallinity and thermal stability of the newly synthesized complex L3 was confirmed by powdered XRD and TGA analysis and theoretical studies; Hirshfeld surface analysis was performed to define the type of interactions occurring in the complex L3. Interestingly, theoretical results were successfully corroborated with experimental results of FTIR and UV absorption. The density functional theory (DFT) calculations were employed for HOMO to LUMO; the energy gap (∆E) was calculated to be 3.6463 eV. The complex L3 was employed as a photocatalyst for the degradation of MB dye and was found to be quite efficient. The results showed MB dye degraded about 90% in 200 min and followed the pseudo-first-order kinetic with rate constant k = 0.0111 min and R = 0.9596. Additionally, molecular docking reveals that the lowest binding energy was -10.8 Kcal/mol which indicates that the L3 complex may be further studied for its biological applications.
Spectroscopic and Molecular Docking Studies of Cu(II), Ni(II), Co(II), and Mn(II) Complexes with Anticonvulsant Therapeutic Agent Gabapentin
New Cu(II), Ni(II), Co(II), and Mn(II) complexes of the gabapentin (Gpn) bidentate drug ligand were synthesized and studied using elemental analyses, melting temperatures, molar conductivity, UV–Vis, magnetic measurements, FTIR, and surface morphology (scanning (SEM) and transmission (TEM) electron microscopes).The gabapentin ligand was shown to form monobasic metal:ligand (1:1) stoichiometry complexes with the metal ions Cu(II), Ni(II), Co(II), and Mn(II). Molar conductance measurements in dimethyl-sulfoxide solvent with a concentration of 10−3 M correlated to a non-electrolytic character for all of the produced complexes. A deformed octahedral environment was proposed for all metal complexes. Through the nitrogen atom of the –NH2 group and the oxygen atom of the carboxylate group, the Gpn drug chelated as a bidentate ligand toward the Mn2+, Co2+, Ni2+, and Cu2+ metal ions. This coordination behavior was validated by spectroscopic, magnetic, and electronic spectra using the formulas of the [M(Gpn)(H2O)3(Cl)]·nH2O complexes (where n = 2–6).Transmission electron microscopy was used to examine the nanostructure of the produced gabapentin complexes. Molecular docking was utilized to investigate the comparative interaction between the Gpn drug and its four metal [Cu(II), Ni(II), Co(II), and Mn(II)] complexes as ligands using serotonin (6BQH) and dopamine (6CM4) receptors. AutoDock Vina results were further refined through molecular dynamics simulation, and molecular processes for receptor–ligand interactions were also studied. The B3LYP level of theory and LanL2DZ basis set was used for DFT (density functional theory) studies. The optimized geometries, along with the MEP map and HOMO → LUMO of the metal complexes, were studied.
Enhancement of Haloperidol Binding Affinity to Dopamine Receptor via Forming a Charge-Transfer Complex with Picric Acid and 7,7,8,8-Tetracyanoquinodimethane for Improvement of the Antipsychotic Efficacy
Haloperidol (HPL) is a typical antipsychotic drug used to treat acute psychotic conditions, delirium, and schizophrenia. Solid charge transfer (CT) products of HPL with 7,7,8,8-tetracyanoquinodimethane (TCNQ) and picric acid (PA) have not been reported till date. Therefore, we conducted this study to investigate the donor–acceptor CT interactions between HPL (donor) and TCNQ and PA (π-acceptors) in liquid and solid states. The complete spectroscopic and analytical analyses deduced that the stoichiometry of these synthesized complexes was 1:1 molar ratio. Molecular docking calculations were performed for HPL as a donor and the resulting CT complexes with TCNQ and PA as acceptors with two protein receptors, serotonin and dopamine, to study the comparative interactions among them, as they are important neurotransmitters that play a large role in mental health. A molecular dynamics simulation was ran for 100 ns with the output from AutoDock Vina to refine docking results and better examine the molecular processes of receptor–ligand interactions. When compared to the reactant donor, the CT complex [(HPL)(TCNQ)] interacted with serotonin and dopamine more efficiently than HPL only. CT complex [(HPL)(TCNQ)] with dopamine (CTtD) showed the greatest binding energy value among all. Additionally, CTtD complex established more a stable interaction with dopamine than HPL–dopamine.
Increasing the Efficacy of Seproxetine as an Antidepressant Using Charge–Transfer Complexes
The charge transfer interactions between the seproxetine (SRX) donor and π-electron acceptors [picric acid (PA), dinitrobenzene (DNB), p-nitrobenzoic acid (p-NBA), 2,6-dichloroquinone-4-chloroimide (DCQ), 2,6-dibromoquinone-4-chloroimide (DBQ), and 7,7′,8,8′-tetracyanoquinodi methane (TCNQ)] were studied in a liquid medium, and the solid form was isolated and characterized. The spectrophotometric analysis confirmed that the charge–transfer interactions between the electrons of the donor and acceptors were 1:1 (SRX: π-acceptor). To study the comparative interactions between SRX and the other π-electron acceptors, molecular docking calculations were performed between SRX and the charge transfer (CT) complexes against three receptors (serotonin, dopamine, and TrkB kinase receptor). According to molecular docking, the CT complex [(SRX)(TCNQ)] binds with all three receptors more efficiently than SRX alone, and [(SRX)(TCNQ)]-dopamine (CTcD) has the highest binding energy value. The results of AutoDock Vina revealed that the molecular dynamics simulation of the 100 ns run revealed that both the SRX-dopamine and CTcD complexes had a stable conformation; however, the CTcD complex was more stable. The optimized structure of the CT complexes was obtained using density functional theory (B-3LYP/6-311G++) and was compared.
Enhancing the Antipsychotic Effect of Risperidone by Increasing Its Binding Affinity to Serotonin Receptor via Picric Acid: A Molecular Dynamics Simulation
The aim of this study was to assess the utility of inexpensive techniques in evaluating the interactions of risperidone (Ris) with different traditional π-acceptors, with subsequent application of the findings into a Ris pharmaceutical formulation with improved therapeutic properties. Molecular docking calculations were performed using Ris and its different charge-transfer complexes (CT) with picric acid (PA), 2,3-dichloro-5,6-dicyanop-benzoquinon (DDQ), tetracyanoquinodimethane (TCNQ), tetracyano ethylene (TCNE), tetrabromo-pquinon (BL), and tetrachloro-p-quinon (CL), as donors, and three receptors (serotonin, dopamine, and adrenergic) as acceptors to study the comparative interactions among them. To refine the docking results and further investigate the molecular processes of receptor–ligand interactions, a molecular dynamics simulation was run with output obtained from AutoDock Vina. Among all investigated complexes, the [(Ris) (PA)]-serotonin (CTcS) complex showed the highest binding energy. Molecular dynamics simulation of the 100 ns run revealed that both the Ris-serotonin (RisS) and CTcS complexes had a stable conformation; however, the CTcS complex was more stable.
Multispectral and Molecular Docking Studies Reveal Potential Effectiveness of Antidepressant Fluoxetine by Forming π-Acceptor Complexes
Poor mood, lack of pleasure, reduced focus, remorse, unpleasant thoughts, and sleep difficulties are all symptoms of depression. The only approved treatment for children and adolescents with major depressive disorder (MDD) is fluoxetine hydrochloride (FXN), a serotonin selective reuptake inhibitor antidepressant. MDD is the most common cause of disability worldwide. In the present research, picric acid (PA); dinitrobenzene; p-nitro benzoic acid; 2,6-dichloroquinone-4-chloroimide; 2,6-dibromoquinone-4-chloroimide; and 7,7′,8,8′-tetracyanoquinodimethane were used to make 1:1 FXN charge-transfer compounds in solid and liquid forms. The isolated complexes were then characterized by elemental analysis, conductivity, infrared, Raman, and 1H-NMR spectra, thermogravimetric analysis, scanning electron microscopy, and X-ray powder diffraction. Additionally, a molecular docking investigation was conducted on the donor moiety using FXN alone and the resulting charge transfer complex [(FXN)(PA)] as an acceptor to examine the interactions against two protein receptors (serotonin or dopamine). Interestingly, the [(FXN)(PA)] complex binds to both serotonin and dopamine more effectively than the FXN drug alone. Furthermore, [(FXN)(PA)]–serotonin had a greater binding energy than [FXN]–serotonin. Theoretical data were also generated by density functional theory simulations, which aided the molecular geometry investigation and could be beneficial to researchers in the future.
Spectroscopic and Molecular Docking Analysis of π-Acceptor Complexes with the Drug Barbital
The drug barbital (Bar) has a strong sedative–hypnotic effect. The intermolecular charge transfer compounds associated with the chemical reactions between Bar and some π acceptors, such as 2,6-dibromoquinone-4-chloroimide (DBQ), tetracyanoquinodimethane (TCNQ), chloranil (CHL), and chloranilic acid (CLA), have been synthesized and isolated in solid state. The synthesized products have the molecular formulas (Bar–DBQ), (Bar–TCNQ), (Bar–CHL), and (Bar–CLA) with 1:1 stoichiometry based on Raman, IR, TG, 1H NMR, XRD, SEM, and UV-visible analysis techniques. Additionally, the comparative analysis of molecular docking between the donor reactant moiety, Bar, and its four CT complexes was conducted using two neurotransmitter receptors (dopamine and serotonin). The docking results obtained from AutoDockVina software were investigated by a molecular dynamics simulation technique with 100ns run. The molecular mechanisms behind receptor–ligand interactions were also looked into. The DFT computations were conducted using theory at the B3LYP/6-311G++ level. In addition, the HOMO LUMO electronic energy gap and the CT complex’s optimal geometry and molecule electrostatic potential were examined.
Crystal Structure, Topology, DFT and Hirshfeld Surface Analysis of a Novel Charge Transfer Complex (L3) of Anthraquinone and 4-(anthracen-9-yl)meth-yl amino-benzoic Acid (L2) Exhibiting Photocatalytic Properties: An Experimental and Theoretical Approach
Here, we report a facile route to the synthesizing of a new donor–acceptor complex, L3, using 4-[(anthracen-9-yl)meth-yl] amino-benzoic acid, L2, as donor moiety with anthraquinone as an acceptor moiety. The formation of donor–acceptor complex L3 was facilitated via H-bonding and characterized by single-crystal X-ray diffraction. The X-ray diffraction results confirmed the synthesized donor–acceptor complex L3 crystal belongs to the triclinic system possessing the P-1 space group. The complex L3 was also characterized by other spectral techniques, viz., FTIR and UV absorption spectroscopy, which confirmed the formation of new bonds between donor L2 moiety and acceptor anthraquinone molecule. The crystallinity and thermal stability of the newly synthesized complex L3 was confirmed by powdered XRD and TGA analysis and theoretical studies; Hirshfeld surface analysis was performed to define the type of interactions occurring in the complex L3. Interestingly, theoretical results were successfully corroborated with experimental results of FTIR and UV absorption. The density functional theory (DFT) calculations were employed for HOMO to LUMO; the energy gap (∆E) was calculated to be 3.6463 eV. The complex L3 was employed as a photocatalyst for the degradation of MB dye and was found to be quite efficient. The results showed MB dye degraded about 90% in 200 min and followed the pseudo-first-order kinetic with rate constant k = 0.0111 min−1 and R2 = 0.9596. Additionally, molecular docking reveals that the lowest binding energy was −10.8 Kcal/mol which indicates that the L3 complex may be further studied for its biological applications.
Magnetically recoverable Fe3O4 nanocatalyst for the synthesis of biodynamically significant 1H-pyrazolo1,2-bphthalazine-5,10-diones derivatives and its DFT study
An environmentally sustainable and proficient method is reported for the synthesis of medicinally important pyrazolo[1,2-b] phthalazine dione derivatives by aqueous micellar medium catalysed by Fe3O4 NPs. Dialkyl acetylenedicarboxylate with isocyanides in the presence of phthalhydrazide is used as starting material. The main advantages of this protocol are the availability of starting materials, short reaction times, green solvents and practical simplicity.
Attempting to Increase the Effectiveness of the Antidepressant Trazodone Hydrochloride Drug Using π-Acceptors
Major depressive disorder is a prevalent mood illness that is mildly heritable. Cases with the highest familial risk had recurrence and onset at a young age. Trazodone hydrochloride is an antidepressant medicine that affects the chemical messengers in the brain known as neurotransmitters, which include acetylcholine, norepinephrine, dopamine, and serotonin. In the present research, in solid and liquid phases, the 1:1 charge-transfer complexes between trazodone hydrochloride (TZD) and six different π-acceptors were synthesized and investigated using different microscopic techniques. The relation of dative ion pairs [TZD+, A−], where A is the acceptor, was inferred via intermolecular charge-transfer complexes. Additionally, a molecular docking examination was utilized to compare the interactions of protein receptors (serotonin-6BQH) with the TZD alone or in combination with the six distinct acceptor charge-transfer complexes. To refine the docking results acquired from AutoDock Vina and to better examine the molecular mechanisms of receptor-ligand interactions, a 100 ns run of molecular dynamics simulation was used. All the results obtained in this study prove that the 2,6-dichloroquinone-4-chloroimide (DCQ)/TZD complex interacts with serotonin receptors more efficiently than reactant donor TZD only and that [(TZD)(DCQ)]-serotonin has the highest binding energy value of all π-acceptor complexes.