Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
65
result(s) for
"Shan, Shu-Ou"
Sort by:
Role of Hsp70 in Post-Translational Protein Targeting: Tail-Anchored Membrane Proteins and Beyond
The Hsp70 family of molecular chaperones acts as a central ‘hub’ in the cell that interacts with numerous newly synthesized proteins to assist in their biogenesis. Apart from its central and well-established role in facilitating protein folding, Hsp70s also act as key decision points in the cellular chaperone network that direct client proteins to distinct biogenesis and quality control pathways. In this paper, we review accumulating data that illustrate a new branch in the Hsp70 network: the post-translational targeting of nascent membrane and organellar proteins to diverse cellular organelles. Work in multiple pathways suggests that Hsp70, via its ability to interact with components of protein targeting and translocation machineries, can initiate elaborate substrate relays in a sophisticated cascade of chaperones, cochaperones, and receptor proteins, and thus provide a mechanism to safeguard and deliver nascent membrane proteins to the correct cellular membrane. We discuss the mechanistic principles gleaned from better-studied Hsp70-dependent targeting pathways and outline the observations and outstanding questions in less well-studied systems.
Journal Article
A ribosome-associated chaperone enables substrate triage in a cotranslational protein targeting complex
by
Chandrasekar, Sowmya
,
Shan, Shu-ou
,
Lee, Jae Ho
in
631/114/2390
,
631/45/470/1981
,
631/57/2265
2020
Protein biogenesis is essential in all cells and initiates when a nascent polypeptide emerges from the ribosome exit tunnel, where multiple ribosome-associated protein biogenesis factors (RPBs) direct nascent proteins to distinct fates. How distinct RPBs spatiotemporally coordinate with one another to affect accurate protein biogenesis is an emerging question. Here, we address this question by studying the role of a cotranslational chaperone, nascent polypeptide-associated complex (NAC), in regulating substrate selection by signal recognition particle (SRP), a universally conserved protein targeting machine. We show that mammalian SRP and SRP receptors (SR) are insufficient to generate the biologically required specificity for protein targeting to the endoplasmic reticulum. NAC co-binds with and remodels the conformational landscape of SRP on the ribosome to regulate its interaction kinetics with SR, thereby reducing the nonspecific targeting of signalless ribosomes and pre-emptive targeting of ribosomes with short nascent chains. Mathematical modeling demonstrates that the NAC-induced regulations of SRP activity are essential for the fidelity of cotranslational protein targeting. Our work establishes a molecular model for how NAC acts as a triage factor to prevent protein mislocalization, and demonstrates how the macromolecular crowding of RPBs at the ribosome exit site enhances the fidelity of substrate selection into individual protein biogenesis pathways.
Biochemistry combined with biophysical measurements and mathematical modeling offer insight into the mechanism by which the cotranslational chaperone, nascent polypeptide-associated complex (NAC), modulates substrate selection by signal recognition particle (SRP) and reduces aberrant, nonspecific targeting of ribosomes to the ER.
Journal Article
Ribosome profiling reveals multiple roles of SecA in cotranslational protein export
2022
SecA, an ATPase known to posttranslationally translocate secretory proteins across the bacterial plasma membrane, also binds ribosomes, but the role of SecA’s ribosome interaction has been unclear. Here, we used a combination of ribosome profiling methods to investigate the cotranslational actions of SecA. Our data reveal the widespread accumulation of large periplasmic loops of inner membrane proteins in the cytoplasm during their cotranslational translocation, which are specifically recognized and resolved by SecA in coordination with the proton motive force (PMF). Furthermore, SecA associates with 25% of secretory proteins with highly hydrophobic signal sequences at an early stage of translation and mediates their cotranslational transport. In contrast, the chaperone trigger factor (TF) delays SecA engagement on secretory proteins with weakly hydrophobic signal sequences, thus enforcing a posttranslational mode of their translocation. Our results elucidate the principles of SecA-driven cotranslational protein translocation and reveal a hierarchical network of protein export pathways in bacteria.
Using a combination of ribosome profiling methods, Zhu et al. investigate the principles governing the cotranslational interaction of SecA with nascent proteins and reveal a hierarchical organization of protein export pathways in bacteria.
Journal Article
Fidelity of Cotranslational Protein Targeting to the Endoplasmic Reticulum
2021
Fidelity of protein targeting is essential for the proper biogenesis and functioning of organelles. Unlike replication, transcription and translation processes, in which multiple mechanisms to recognize and reject noncognate substrates are established in energetic and molecular detail, the mechanisms by which cells achieve a high fidelity in protein localization remain incompletely understood. Signal recognition particle (SRP), a conserved pathway to mediate the localization of membrane and secretory proteins to the appropriate cellular membrane, provides a paradigm to understand the molecular basis of protein localization in the cell. In this chapter, we review recent progress in deciphering the molecular mechanisms and substrate selection of the mammalian SRP pathway, with an emphasis on the key role of the cotranslational chaperone NAC in preventing protein mistargeting to the ER and in ensuring the organelle specificity of protein localization.
Journal Article
Structure of a prehandover mammalian ribosomal SRP·SRP receptor targeting complex
2018
Ribosomes synthesizing membrane or secretory proteins are targeted to the endoplasmic reticulum (ER) in eukaryotic cells by the signal recognition particle (SRP). Upon reaching the ER, the SRP interacts with its receptor to promote transfer of the signal sequence to the protein-conducting channel or translocon. Kobayashi et al. studied the ribosomal complex that forms on the ER, in which the SRP and its receptor interact to transfer the newly synthesized protein to the translocon. The observed organization of the assembly reveals the roles of multiple eukaryotic-specific protein components present in the SRP and its receptor in stabilizing the conformation that facilitates signal sequence handover. Science , this issue p. 323 Eukaryotic-specific signal recognition particle and receptor components stabilize the ribosomal endoplasmic reticulum–targeting complex. Signal recognition particle (SRP) targets proteins to the endoplasmic reticulum (ER). SRP recognizes the ribosome synthesizing a signal sequence and delivers it to the SRP receptor (SR) on the ER membrane followed by the transfer of the signal sequence to the translocon. Here, we present the cryo–electron microscopy structure of the mammalian translating ribosome in complex with SRP and SR in a conformation preceding signal sequence handover. The structure visualizes all eukaryotic-specific SRP and SR proteins and reveals their roles in stabilizing this conformation by forming a large protein assembly at the distal site of SRP RNA. We provide biochemical evidence that the guanosine triphosphate hydrolysis of SRP·SR is delayed at this stage, possibly to provide a time window for signal sequence handover to the translocon.
Journal Article
Chloroplast SRP43 autonomously protects chlorophyll biosynthesis proteins against heat shock
by
Shan, Shu-ou
,
Wang, Peng
,
Grimm, Bernhard
in
09 BIOMASS FUELS
,
631/449/1736
,
631/449/2661/2663
2021
The assembly of light-harvesting chlorophyll-binding proteins (LHCPs) is coordinated with chlorophyll biosynthesis during chloroplast development. The ATP-independent chaperone known as chloroplast signal recognition particle 43 (cpSRP43) mediates post-translational LHCP targeting to the thylakoid membrane and also participates in tetrapyrrole biosynthesis (TBS). How these distinct actions of cpSRP43 are controlled has remained unclear. Here, we demonstrate that cpSRP43 effectively protects several TBS proteins from heat-induced aggregation and enhances their stability during leaf greening and heat shock. While the substrate-binding domain of cpSRP43 is sufficient for chaperoning LHCPs, the stabilization of TBS clients requires the chromodomain 2 of the protein. Strikingly, cpSRP54—which activates cpSRP43’s LHCP-targeted function—inhibits the chaperone activity of cpSRP43 towards TBS proteins. High temperature weakens the interaction of cpSRP54 with cpSRP43, thus freeing cpSRP43 to interact with and protect the integrity of TBS proteins. Our data indicate that the temperature sensitivity of the cpSRP43–cpSRP54 complex enables cpSRP43 to serve as an autonomous chaperone for the thermoprotection of TBS proteins.
The temperature sensitivity of a chloroplast signal recognition particle complex provides thermoprotection for tetrapyrrole biosynthesis proteins, protecting several proteins from heat-induced aggregation during the assembly of chlorophyll-binding proteins.
Journal Article
Multiple selection filters ensure accurate tail-anchored membrane protein targeting
by
Shan, Shu-ou
,
Rao, Meera
,
Walter, Peter
in
Adenosine Triphosphatases - metabolism
,
Adenosine Triphosphate - metabolism
,
ATPase
2016
Accurate protein localization is crucial to generate and maintain organization in all cells. Achieving accuracy is challenging, as the molecular signals that dictate a protein’s cellular destination are often promiscuous. A salient example is the targeting of an essential class of tail-anchored (TA) proteins, whose sole defining feature is a transmembrane domain near their C-terminus. Here we show that the Guided Entry of Tail-anchored protein (GET) pathway selects TA proteins destined to the endoplasmic reticulum (ER) utilizing distinct molecular steps, including differential binding by the co-chaperone Sgt2 and kinetic proofreading after ATP hydrolysis by the targeting factor Get3. Further, the different steps select for distinct physicochemical features of the TA substrate. The use of multiple selection filters may be general to protein biogenesis pathways that must distinguish correct and incorrect substrates based on minor differences.
Journal Article
The molecular mechanism of cotranslational membrane protein recognition and targeting by SecA
by
Jaskolowski, Mateusz
,
Ban, Nenad
,
Shu-ou Shan
in
Adenosine triphosphatase
,
Binding sites
,
E coli
2019
Cotranslational protein targeting is a conserved process for membrane protein biogenesis. In Escherichia coli, the essential ATPase SecA was found to cotranslationally target a subset of nascent membrane proteins to the SecYEG translocase at the plasma membrane. The molecular mechanism of this pathway remains unclear. Here we use biochemical and cryoelectron microscopy analyses to show that the amino-terminal amphipathic helix of SecA and the ribosomal protein uL23 form a composite binding site for the transmembrane domain (TMD) on the nascent protein. This binding mode further enables recognition of charged residues flanking the nascent TMD and thus explains the specificity of SecA recognition. Finally, we show that membrane-embedded SecYEG promotes handover of the translating ribosome from SecA to the translocase via a concerted mechanism. Our work provides a molecular description of the SecA-mediated cotranslational targeting pathway and demonstrates an unprecedented role of the ribosome in shielding nascent TMDs.
Journal Article
Dynamic stability of Sgt2 enables selective and privileged client handover in a chaperone triad
by
Liu, Yumeng
,
Chandrasekar, Sowmya
,
Shan, Shu-ou
in
631/1647/245/2225
,
631/45/470/1981
,
631/57/2265
2024
Membrane protein biogenesis poses acute challenges to protein homeostasis, and how they are selectively escorted to the target membrane is not well understood. Here we address this question in the guided-entry-of-tail-anchored protein (GET) pathway, in which tail-anchored membrane proteins (TAs) are relayed through an Hsp70-Sgt2-Get3 chaperone triad for targeting to the endoplasmic reticulum. We show that the Hsp70 ATPase cycle and TA substrate drive dimeric Sgt2 from a wide-open conformation to a closed state, in which TAs are protected by both substrate binding domains of Sgt2. Get3 is privileged to receive TA from closed Sgt2, whereas off-pathway chaperones remove TAs from open Sgt2. Sgt2 closing is less favorable with suboptimal GET substrates, which are rejected during or after the Hsp70-to-Sgt2 handover. Our results demonstrate how fine-tuned conformational dynamics in Sgt2 enable hydrophobic TAs to be effectively funneled onto their dedicated targeting factor while also providing a mechanism for substrate selection.
Newly synthesized tail-anchored membrane proteins (TAs) are relayed in a chaperone triad, Hsp70, Sgt2, and Get3, for delivery to the endoplasmic reticulum. Here, the authors show how the conformational dynamics of the cochaperone Sgt2 generates a decision point to enable efficient and selective TA targeting.
Journal Article
Structure of the quaternary complex between SRP, SR, and translocon bound to the translating ribosome
2017
During co-translational protein targeting, the signal recognition particle (SRP) binds to the translating ribosome displaying the signal sequence to deliver it to the SRP receptor (SR) on the membrane, where the signal peptide is transferred to the translocon. Using electron cryo-microscopy, we have determined the structure of a quaternary complex of the translating
Escherichia coli
ribosome, the SRP–SR in the ‘activated’ state and the translocon. Our structure, supported by biochemical experiments, reveals that the SRP RNA adopts a kinked and untwisted conformation to allow repositioning of the ‘activated’ SRP–SR complex on the ribosome. In addition, we observe the translocon positioned through interactions with the SR in the vicinity of the ribosome exit tunnel where the signal sequence is extending beyond its hydrophobic binding groove of the SRP M domain towards the translocon. Our study provides new insights into the mechanism of signal sequence transfer from the SRP to the translocon.
Membrane proteins are inserted co-transnationally through the association between ribosome, the signal recognition particle and its receptor, and the membrane-bound translocon. Here the authors present a cryo-EM reconstruction of this quaternary complex in the activated state and propose a model for signal sequence transfer to the translocon.
Journal Article