Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
53 result(s) for "Shang, Chengjia"
Sort by:
Recent progress in visualization and digitization of coherent transformation structures and application in high-strength steel
High-strength steels are mainly composed of medium- or low-temperature microstructures, such as bainite or martensite, with coherent transformation characteristics. This type of microstructure has a high density of dislocations and fine crystallographic structural units, which ease the coordinated matching of high strength, toughness, and plasticity. Meanwhile, given its excellent welding performance, high-strength steel has been widely used in major engineering constructions, such as pipelines, ships, and bridges. However, visualization and digitization of the effective units of these coherent transformation structures using traditional methods (optical microscopy and scanning electron microscopy) is difficult due to their complex morphology. Moreover, the establishment of quantitative relationships with macroscopic mechanical properties and key process parameters presents additional difficulty. This article reviews the latest progress in microstructural visualization and digitization of high-strength steel, with a focus on the application of crystallographic methods in the development of high-strength steel plates and welding. We obtained the crystallographic data (Euler angle) of the transformed microstructures through electron back-scattering diffraction and combined them with the calculation of inverse transformation from bainite or martensite to austenite to determine the reconstruction of high-temperature parent austenite and orientation relationship (OR) during continuous cooling transformation. Furthermore, visualization of crystallographic packets, blocks, and variants based on actual OR and digitization of various grain boundaries can be effectively completed to establish quantitative relationships with alloy composition and key process parameters, thereby providing reverse design guidance for the development of high-strength steel.
Effect of Temperature on Corrosion of HSLA Steels with Different Cr Contents in a Water-Saturated Supercritical CO2 Environment
This study investigates the effects of chromium (0.4~1.2) Cr content and temperature (35–80 °C) on the corrosion behavior and mechanisms of steels in a water-saturated supercritical CO2 (S-CO2) environment, aiming to provide theoretical foundations for material selection and corrosion management in S-CO2 pipeline systems. Results indicate that increasing Cr content promotes the formation of granular bainite as the dominant microstructure, accompanied by refined martensite–austenite (MA) constituents with increased population and reduced dimensions, leading to enhanced strength at the expense of toughness. In the S-CO2/H2O environment, Cr reacts with CO2 to form a dense Cr2O3 layer, significantly suppressing the corrosion rate. Temperature critically governs corrosion kinetics: at 35 °C, where S-CO2 exhibits maximum density and CO2 solubility in water peaks, electrochemical corrosion dominates, resulting in the highest corrosion rate. As temperature rises, the corrosion mechanism transitions to chemical corrosion, while accelerated formation of protective corrosion product films further reduces corrosion rates. Mechanistic analysis reveals that uniform corrosion arises from carbonic acid generated by water dissolution in S-CO2, whereas localized corrosion intensifies upon direct contact between precipitated aqueous phases and the steel surface. These findings offer critical theoretical foundations for optimizing material design, operational parameters, and corrosion mitigation strategies in S-CO2 transportation infrastructure.
Recrystallization and Second-Phase Precipitation in Nb-V Microalloyed Steels: A Thermal Simulation Study
This study investigates the relationship between recrystallization behavior and second-phase precipitation in Nb-V microalloyed steel during the rough rolling stage through thermal simulation experiments. The effects of deformation amount and temperature on austenite recrystallization were analyzed, alongside thermodynamic and kinetic calculations to assess the influence of Nb-V microalloying on second-phase precipitation. The results show that both the deformation amount and temperature significantly affect recrystallization, with Nb-V steel exhibiting more pronounced grain refinement compared to Nb steel. Significant differences in the type, morphology, and size distribution of second-phase precipitates were observed, with Nb-V steel primarily precipitating (Nb, V)C, while Nb steel only precipitates NbC. The average size of second-phase particles in Nb-V steel (10.60 nm) is smaller and more uniformly dispersed than in Nb steel (33.85 nm). Thermodynamic and kinetic analyses indicate that Nb-V microalloying accelerates second-phase precipitation kinetics. Moreover, second-phase particles hinder grain-boundary motion during recrystallization, with their effect surpassing that of Nb and V solid-solution atoms. These findings enhance the understanding of Nb-V composites in refining austenite grain size and promoting second-phase precipitation, providing valuable insights into the design and processing of high-performance microalloyed steels.
Effect of Pre-Weld Heat Treatment on the Microstructure and Properties of Coarse-Grained Heat-Affected Zone of a Wind Power Steel after Simulated Welding
The effect of pre-weld heat treatment on the microstructure and low-temperature impact toughness of the coarse-grained heat-affected zone (CGHAZ) after simulated welding was systematically investigated through the utilization of scanning electron microscopy (SEM) and electron back-scattering diffraction (EBSD). The Charpy impact test validated the presence of an optimal pre-weld heat treatment condition, resulting in the highest impact toughness observed in the CGHAZ. Three temperatures for pre-weld heat treatment (690, 720 and 750 °C) were used to obtain three different matrices (Steel 1, Steel 2, Steel 3) for simulated welding. The optimal pre-weld heat treatment is 720 °C for 15 min followed by water quench. Microstructure characterization showed that there is an evident microstructure comprising bainite (B) in Steel 1 and Steel 2 after pre-weld heat treatment, while the addition of martensite (M) with the pre-weld heat treatment temperature exceeds Ac1 by almost 60 °C (Steel 3). These differences in microstructures obtained from pre-weld heat treatment influence the refinement of high-temperature austenite during subsequent simulated welding reheating processes, resulting in distinct microstructural characteristics in the CGHAZ. After the optimal pre-weld heat treatment, Steel 2 subjected to single-pass welding thermal simulation demonstrates a refined microstructure characterized by a high density of high-angle grain boundaries (HAGBs) within the CGHAZ, particularly evident in block boundaries. These boundaries effectively prevent the propagation of brittle cracks, thereby enhancing the impact toughness.
Evolution of Microstructure and the Influence of Carbides on Hardness Properties in Martensitic Stainless Steel 90Cr18MoV During Heat Treatment
In this study, we utilized Thermo-Calc software (2023a) to optimize the heat treatment process of martensitic stainless steel 90Cr18MoV through phase diagram calculations. The microhardness of 90Cr18MoV was characterized using a nanoindentation instrument. The microstructural morphology of the samples was analyzed using scanning electron microscopy (SEM). The composition of the samples was characterized through scanning electron backscatter diffraction (EBSD) and X-ray diffraction (XRD). Additionally, laser confocal microscopy (FIB) and transmission electron microscopy (TEM) were employed to characterize the precipitate phase composition and size before and after heat treatment, while also observing the dislocation structure within the samples. The relationship between the quenching temperature and the percentage of residual austenite content in the material was established. The influence of the dislocation structure and precipitate size on the hardness of the samples was investigated. The research findings confirm that the observed secondary hardening phenomenon in tempered samples is attributed to the co-precipitation of two types of carbides, M23C6 and MC, within the matrix. The study investigated the effects of the tempering temperature and duration on the size of secondary precipitates, indicating that M23C6 and MC particles with sizes less than or equal to 20 nm contribute to enhancing the matrix, while particles larger than 30 nm lead to a reduction in hardness after tempering. Notably, during the tempering process, M23C6 precipitated from the matrix nucleates on MC.
Effect of Segregation Band on the Microstructure and Properties of a Wind Power Steel before and after Simulated Welding
This article uses scanning electron microscopy (SEM) and electron back-scattering diffraction (EBSD) to study the effect of C and Mn segregation on the microstructure and mechanical properties of high-strength steel with 20 mm thickness used for wind power before and after simulated welding. A Gleeble-3500 (GTC, Dynamic Systems Inc., Poestenkill, NY, USA) was used to study the microstructure evolution of the simulated coarse-grained heat-affected zone (CGHAZ) of experimental steel under different welding heat inputs (10, 14, 20, 30 and 50 kJ/cm) and its relationship with low-temperature impact toughness (−60 °C). The results indicate that alloy element segregation, especially Mn segregation, significantly affects the impact toughness scatter of the steel matrix, as it induces the formation of low-temperature martensite or hard phase, such as M/A (martensite/austenite) constituent. In addition, segregation also reduces the low-temperature impact toughness of the simulated welding samples and increases the fluctuation range. For high-strength steel with yield strength higher than 460 MPa used for wind power generation, there is an optimal welding heat input (~20 kJ/cm), which enables the simulated coarse-grained heat-affected zone (CGHAZ) to obtain the highest impact toughness due to the formation of lath bainite (LB) and the finest crystallographic block units. Excessive or insufficient heat input can induce the formation of coarse granular bainite (GB) or lath martensite (LM), leading to a larger size of crystallographic block units, reducing the hindering effect of brittle crack propagation and deteriorating low-temperature impact toughness.
Development of a Finite Element Model for the HAZ Temperature Field in Longitudinal Welding of Pipeline Steel
In this study, a novel hybrid heat source model was developed to simulate the welding temperature field in the heat-affected zone (HAZ) of X80 pipeline steel. This model replicates welding conditions with high accuracy and allows flexible three-dimensional adjustments to suit various scenarios. Its development involved the innovative integration of microstructural crystallography information with a multi-scale calibration and validation methodology. The methodology focused on three critical aspects: the weld interface morphology, the location of the Ac1 temperature, and the size of prior austenite grains (PAG). The morphology of the weld interface was calibrated to align closely with experimental observations. The model’s prediction of the Ac1 location in actual welded joints exhibited a deviation of less than ±0.3 mm. Furthermore, comparisons of reconstructed PAG sizes between thermal simulation samples and actual HAZ samples revealed minimal discrepancies (5 μm). Validation results confirmed that the calibrated model accurately describes the welding temperature field, with reconstructed PAG size differences between simulation and experimental results being less than 9 μm. These findings validate the accuracy of the calibrated model in predicting welding temperature fields. This research introduces a novel framework for the development of heat source models, offering a robust foundation for improving welding performance and controlling microstructure in different regions during the welding process of high-strength low-alloy (HSLA) steel.
Role of Carbon Content on Microstructure Evolution and Impact Toughness in Coarse-Grained Heat-Affected Zone of High-Strength Steel
The effect of carbon content in the base metals of high-strength steel on the microstructure and impact toughness of simulated welding focusing on a coarse-grained heat-affected zone (CGHAZ) at different heat inputs was systematically investigated by using scanning electron microscopy (SEM) and electron back-scattering diffraction (EBSD). The Charpy impact test confirmed that there was an optimal heat input, which caused the CGHAZ to obtain the highest impact toughness. The optimal heat input is ~20 kJ/cm and remains unchanged with an increase in carbon content from 0.04 to 0.12 wt.%. However, the impact toughness of the CGHAZ decreases with the increase in carbon content at each heat input. Microstructure characterization showed that a CGHAZ with 0.04 wt.% carbon gradually changed from lath bainite (LB) to granular bainite (GB) with an increase in heat input, while it changed from lath martensite (LM) to LB and then to GB for a CGHAZ with 0.12 wt.% carbon. Although the density of high-angle grain boundaries (HAGBs) obtained at 20 kJ/cm in the high-carbon sample is higher than that of the low-carbon sample, its impact toughness is lower, which is related to the parallel structure of the lath bundles and the morphology the austenite penetration.
Effect of Double-Quenching on the Hardness and Toughness of a Wear-Resistant Steel
Martensitic/bainitic wear-resistant steels are widely used in civilian industry, where a good combination of strength and toughness is required. In the present study, a double-quenching process was applied and compared to the conventional single-quenching process. The microhardness and ductile–brittle transition temperature were measured, and the microstructure was characterized with scanning electron microscopy and electron backscatter diffraction (EBSD) technique. It was found that the double-quenching process refined the prior austenite grain size by 43% and simultaneously improved the toughness and hardness. The ductile-to-brittle transition temperature was decreased from −77 °C to −90 °C, and the hardness was increased by 8%. Based on the EBSD data, a detailed analysis of the grain boundary distribution was performed using a recently developed machine learning model. Unlike what was found in previous studies, for the studied wear-resistant steel, the refinement of the prior austenite grain did not increase the block boundary density while increasing the high-angle packet boundary density. As a result, the total density of the high-angle grain boundaries in the double-quenched specimen was not improved compared to the single-quenched specimen. Further inspection suggested that it is the prior austenite grain boundaries and high-angle packet boundaries that contribute to the hardness and toughness, and the key factors that determine their effectiveness are the high misorientation angle between the {110} slip planes and the high slip transmission factor.
EBSD characterization of secondary microcracks in the heat affected zone of a X100 pipeline steel weld joint
In order to get better understanding of the mechanism of cleavage fracture in the heat affected zone (HAZ) of X100 pipeline steel, secondary microcracks underneath the brittle fracture surface of a Charpy impacted sample with the notch located in the HAZ were characterized using electron backscattered diffraction. Since the coarse grained (CG) HAZ and intercritically reheated coarse grained (ICCG) HAZ are well accepted as the weakest region in the HAZ, the cleavage secondary microcracks in these two regions were observed respectively. Initiation and propagation of cleavage microcracks were discussed. The results show that the fracture behavior is obviously influenced by local microstructure. There are more secondary microcracks in the ICCGHAZ than in the CGHAZ which shows different probability for microcrack nucleation. Fracture mechanism changes from nucleation control in the CGHAZ to propagation control in the ICCGHAZ. The main reason for the increased possibility of secondary microcracks formation and the change in fracture mechanism is due to the formation of coarse necklacing martensite–austenite constituent in the ICCGHAZ. The results also show that high angle boundary, with the misorientation larger than 45 ∘ , is effective in deflecting or arresting brittle cracks, while low angle boundary ( 15 ∘ - 45 ∘ ) seems not. Most preferred crack planes are {100}, with decreasing probability of {110}, {112}, {123}.