Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
111 result(s) for "Shankar-Hari, Manu"
Sort by:
Symptoms of burnout in intensive care unit specialists facing the COVID-19 outbreak
BackgroundThe COVID-19 pandemic has resulted in an unprecedented healthcare crisis with a high prevalence of psychological distress in healthcare providers. We sought to document the prevalence of burnout syndrome amongst intensivists facing the COVID-19 outbreak.MethodsCross-sectional survey among intensivists part of the European Society of Intensive Care Medicine. Symptoms of severe burnout, anxiety and depression were collected. Factors independently associated with severe burnout were assessed using Cox model.ResultsResponse rate was 20% (1001 completed questionnaires were returned, 45 years [39–53], 34% women, from 85 countries, 12 regions, 50% university-affiliated hospitals). The prevalence of symptoms of anxiety and depression or severe burnout was 46.5%, 30.2%, and 51%, respectively, and varied significantly across regions. Rating of the relationship between intensivists and other ICU stakeholders differed significantly according to the presence of anxiety, depression, or burnout. Similar figures were reported for their rating of the ethical climate or the quality of the decision-making. Factors independently associated with anxiety were female gender (HR 1.85 [1.33–2.55]), working in a university-affiliated hospital (HR 0.58 [0.42–0.80]), living in a city of > 1 million inhabitants (HR 1.40 [1.01–1.94]), and clinician’s rating of the ethical climate (HR 0.83 [0.77–0.90]). Independent determinants of depression included female gender (HR 1.63 [1.15–2.31]) and clinician’s rating of the ethical climate (HR 0.84 [0.78–0.92]). Factors independently associated with symptoms of severe burnout included age (HR 0.98/year [0.97–0.99]) and clinician’s rating of the ethical climate (HR 0.76 [0.69–0.82]).ConclusionsThe COVID-19 pandemic has had an overwhelming psychological impact on intensivists. Follow-up, and management are warranted to assess long-term psychological outcomes and alleviate the psychological burden of the pandemic on frontline personnel.
Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection
Although myocarditis and pericarditis were not observed as adverse events in coronavirus disease 2019 (COVID-19) vaccine trials, there have been numerous reports of suspected cases following vaccination in the general population. We undertook a self-controlled case series study of people aged 16 or older vaccinated for COVID-19 in England between 1 December 2020 and 24 August 2021 to investigate hospital admission or death from myocarditis, pericarditis and cardiac arrhythmias in the 1–28 days following adenovirus (ChAdOx1, n  = 20,615,911) or messenger RNA-based (BNT162b2, n  = 16,993,389; mRNA-1273, n  = 1,006,191) vaccines or a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive test ( n  = 3,028,867). We found increased risks of myocarditis associated with the first dose of ChAdOx1 and BNT162b2 vaccines and the first and second doses of the mRNA-1273 vaccine over the 1–28 days postvaccination period, and after a SARS-CoV-2 positive test. We estimated an extra two (95% confidence interval (CI) 0, 3), one (95% CI 0, 2) and six (95% CI 2, 8) myocarditis events per 1 million people vaccinated with ChAdOx1, BNT162b2 and mRNA-1273, respectively, in the 28 days following a first dose and an extra ten (95% CI 7, 11) myocarditis events per 1 million vaccinated in the 28 days after a second dose of mRNA-1273. This compares with an extra 40 (95% CI 38, 41) myocarditis events per 1 million patients in the 28 days following a SARS-CoV-2 positive test. We also observed increased risks of pericarditis and cardiac arrhythmias following a positive SARS-CoV-2 test. Similar associations were not observed with any of the COVID-19 vaccines, apart from an increased risk of arrhythmia following a second dose of mRNA-1273. Subgroup analyses by age showed the increased risk of myocarditis associated with the two mRNA vaccines was present only in those younger than 40. A self-controlled case series using individual-patient-level data from over 38 million people aged 16 years and over, reveals an increased risk of myocarditis within a week of receiving a first dose of ChAdOx1, BNT162b2 and mRNA-1273 vaccines, which was further increased after a second dose of either mRNA vaccine. SARS-CoV-2 infection was associated with even greater risk of myocarditis, as well as pericarditis and cardiac arrhythmia.
Towards a biological definition of ARDS: are treatable traits the solution?
The pathophysiology of acute respiratory distress syndrome (ARDS) includes the accumulation of protein-rich pulmonary edema in the air spaces and interstitial areas of the lung, variable degrees of epithelial injury, variable degrees of endothelial barrier disruption, transmigration of leukocytes, alongside impaired fluid and ion clearance. These pathophysiological features are different between patients contributing to substantial biological heterogeneity. In this context, it is perhaps unsurprising that a wide range of pharmacological interventions targeting these pathophysiological processes have failed to improve patient outcomes. In this manuscript, our goal is to provide a narrative summary of the potential methods to capture the underlying biological heterogeneity of ARDS and discuss how this information could inform future ARDS redefinitions. We discuss what biological tests are available to identify patients with any of the following predominant biological patterns: (1) epithelial and/or endothelial injury, (2) protein rich pulmonary edema and (3) systemic or within lung inflammatory responses.
Understanding Long-Term Outcomes Following Sepsis: Implications and Challenges
Sepsis is life-threating organ dysfunction due to infection. Incidence of sepsis is increasing and the short-term mortality is improving, generating more sepsis survivors. These sepsis survivors suffer from additional morbidities such as higher risk of readmissions, cardiovascular disease, cognitive impairment and of death, for years following index sepsis episode. In the first year following index sepsis episode, approximately 60 % of sepsis survivors have at least one rehospitalisation episode, which is most often due to infection and one in six sepsis survivors die. Sepsis survivors also have a higher risk of cognitive impairment and cardiovascular disease contributing to the reduced life expectancy seen in this population, when assessed with life table comparisons. For optimal design of interventional trials to reduce these bad outcomes in sepsis survivors, in-depth understanding of major risk factors for these morbid events, their modifiability and a causal relationship to the pathobiology of sepsis is essential. This review highlights the recent advances, clinical and methodological challenges in our understanding of these morbid events in sepsis survivors.
Risk of thrombocytopenia and thromboembolism after covid-19 vaccination and SARS-CoV-2 positive testing: self-controlled case series study
AbstractObjectiveTo assess the association between covid-19 vaccines and risk of thrombocytopenia and thromboembolic events in England among adults.DesignSelf-controlled case series study using national data on covid-19 vaccination and hospital admissions.SettingPatient level data were obtained for approximately 30 million people vaccinated in England between 1 December 2020 and 24 April 2021. Electronic health records were linked with death data from the Office for National Statistics, SARS-CoV-2 positive test data, and hospital admission data from the United Kingdom’s health service (NHS).Participants29 121 633 people were vaccinated with first doses (19 608 008 with Oxford-AstraZeneca (ChAdOx1 nCoV-19) and 9 513 625 with Pfizer-BioNTech (BNT162b2 mRNA)) and 1 758 095 people had a positive SARS-CoV-2 test. People aged ≥16 years who had first doses of the ChAdOx1 nCoV-19 or BNT162b2 mRNA vaccines and any outcome of interest were included in the study.Main outcome measuresThe primary outcomes were hospital admission or death associated with thrombocytopenia, venous thromboembolism, and arterial thromboembolism within 28 days of three exposures: first dose of the ChAdOx1 nCoV-19 vaccine; first dose of the BNT162b2 mRNA vaccine; and a SARS-CoV-2 positive test. Secondary outcomes were subsets of the primary outcomes: cerebral venous sinus thrombosis (CVST), ischaemic stroke, myocardial infarction, and other rare arterial thrombotic events.ResultsThe study found increased risk of thrombocytopenia after ChAdOx1 nCoV-19 vaccination (incidence rate ratio 1.33, 95% confidence interval 1.19 to 1.47 at 8-14 days) and after a positive SARS-CoV-2 test (5.27, 4.34 to 6.40 at 8-14 days); increased risk of venous thromboembolism after ChAdOx1 nCoV-19 vaccination (1.10, 1.02 to 1.18 at 8-14 days) and after SARS-CoV-2 infection (13.86, 12.76 to 15.05 at 8-14 days); and increased risk of arterial thromboembolism after BNT162b2 mRNA vaccination (1.06, 1.01 to 1.10 at 15-21 days) and after SARS-CoV-2 infection (2.02, 1.82 to 2.24 at 15-21 days). Secondary analyses found increased risk of CVST after ChAdOx1 nCoV-19 vaccination (4.01, 2.08 to 7.71 at 8-14 days), after BNT162b2 mRNA vaccination (3.58, 1.39 to 9.27 at 15-21 days), and after a positive SARS-CoV-2 test; increased risk of ischaemic stroke after BNT162b2 mRNA vaccination (1.12, 1.04 to 1.20 at 15-21 days) and after a positive SARS-CoV-2 test; and increased risk of other rare arterial thrombotic events after ChAdOx1 nCoV-19 vaccination (1.21, 1.02 to 1.43 at 8-14 days) and after a positive SARS-CoV-2 test.ConclusionIncreased risks of haematological and vascular events that led to hospital admission or death were observed for short time intervals after first doses of the ChAdOx1 nCoV-19 and BNT162b2 mRNA vaccines. The risks of most of these events were substantially higher and more prolonged after SARS-CoV-2 infection than after vaccination in the same population.
A guide to immunotherapy for COVID-19
Immune dysregulation is an important component of the pathophysiology of COVID-19. A large body of literature has reported the effect of immune-based therapies in patients with COVID-19, with some remarkable successes such as the use of steroids or anti-cytokine therapies. However, challenges in clinical decision-making arise from the complexity of the disease phenotypes and patient heterogeneity, as well as the variable quality of evidence from immunotherapy studies. This Review aims to support clinical decision-making by providing an overview of the evidence generated by major clinical trials of host-directed therapy. We discuss patient stratification and propose an algorithm to guide the use of immunotherapy strategies in the clinic. This will not only help guide treatment decisions, but may also help to design future trials that investigate immunotherapy in other severe infections. This Review aims to support clinical decision-making by providing an overview of the evidence for immunotherapy strategies in patients with COVID-19.
Lymphocyte subset expression and serum concentrations of PD-1/PD-L1 in sepsis - pilot study
Background Sepsis remains a major cause of mortality in critical care, for which specific treatments are lacking. The dysregulated response to infection seen in sepsis includes features of lymphocyte dysfunction and exhaustion, suggesting that immune-stimulatory therapy may improve outcomes in certain patient groups. Monoclonal antibodies targeting checkpoint molecules, such as programmed-death 1 protein (PD-1) and its ligand PD-L1, have shown success in stimulating the immune response in patients with cancer, and are being considered for future sepsis trials. The aims of this pilot study were to compare lymphocyte subset expression of PD-1 and its ligands between patients with sepsis and controls; to characterize serum levels of PD-1 and PD-L1 in patients with sepsis and controls, and determine if serum concentrations correlated with cell surface expression. Methods Expression levels of PD-1, PD-L1 and PD-L2 on four lymphocyte subsets (CD27 + CD19+ B cells, CD27-CD19+ B cells, CD27 + CD4+ T cells and CD27-CD4+ T cells) were compared between 22 patients with sepsis (including 11 survivors and 11 non-survivors) and 11 healthy controls using flow cytometry. Levels of soluble PD-1 and PD-L1 were also compared using commercially available ELISA kits. Results Expression of PD-1 and PD-L1 was higher on all lymphocyte subsets in patients with sepsis compared to controls ( p  < 0.05). PD-L2 expression on CD27+ B cells was also higher in patients with sepsis ( p  = 0.0317). There was differential expression of PD-1 by CD27 status, with expression being higher in the B and T cell subsets associated with memory status (CD27+ and CD27-, respectively; p  < 0.001). Higher PD-1 and PD-L1 expression was not associated with mortality or with a higher risk of nosocomial infection. There were no differences in levels of soluble PD-1 or PD-L1 between patients with sepsis and controls. Conclusions Higher expression of PD-1 by memory subpopulations of B cells and CD4+ T cells, with normal soluble PD-1 and PD-L1 in patients with sepsis, are novel findings. This information may be useful to enrich sepsis populations for trials of PD-1/PD-L1 blockade.