Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
101 result(s) for "Shao, Junming"
Sort by:
In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO2 reduction to methanol
While exploring the process of CO/CO 2 electroreduction (CO x RR) is of great significance to achieve carbon recycling, deciphering reaction mechanisms so as to further design catalytic systems able to overcome sluggish kinetics remains challenging. In this work, a model single-Co-atom catalyst with well-defined coordination structure is developed and employed as a platform to unravel the underlying reaction mechanism of CO x RR. The as-prepared single-Co-atom catalyst exhibits a maximum methanol Faradaic efficiency as high as 65% at 30 mA/cm 2 in a membrane electrode assembly electrolyzer, while on the contrary, the reduction pathway of CO 2 to methanol is strongly decreased in CO 2 RR. In-situ X-ray absorption and Fourier-transform infrared spectroscopies point to a different adsorption configuration of *CO intermediate in CORR as compared to that in CO 2 RR, with a weaker stretching vibration of the C–O bond in the former case. Theoretical calculations further evidence the low energy barrier for the formation of a H-CoPc-CO – species, which is a critical factor in promoting the electrochemical reduction of CO to methanol. Deciphering the reaction mechanisms of CO/CO2 electroreduction to methanol remains challenging. Here the authors report the higher electron density of single-Co-atom center, along with a different adsorption configuration of *CO, is crucial for promoting the CO electroreduction to methanol.
Location prediction on trajectory data: A review
Location prediction is the key technique in many location based services including route navigation, dining location recommendations, and traffic planning and control, to mention a few. This survey provides a comprehensive overview of location prediction, including basic definitions and concepts, algorithms, and applications. First, we introduce the types of trajectory data and related basic concepts. Then, we review existing location-prediction methods, ranging from temporal-pattern-based prediction to spatiotemporal-pattern-based prediction. We also discuss and analyze the advantages and disadvantages of these algorithms and briefly summarize current applications of location prediction in diverse fields. Finally, we identify the potential challenges and future research directions in location prediction.
Multi-level clustering based on cluster order constructed with dynamic local density
Density-based clustering has gained increasing attention during the past decades as it allows the discovery of clusters with arbitrary shapes and is robust to noisy objects. However, existing density-based clustering approaches tend to fail if there exist multiple clusters with different densities in a sea of noise. In this paper, we propose a new multi-level clustering method by exploiting the dynamic local density with wavelet transform. Specifically, a concept of dynamic reverse k-nearest neighbor is first introduced, and its count distribution is modeled as a Poisson distribution. The dynamic local density, which is robust to density varieties, is further defined with the cumulative Poisson distribution function. Afterward, a cluster order is constructed based on the derived dynamic local density and finally used to yield the clusters by employing the wavelet transform. Compared to existing approaches, our proposed method can detect clusters with different densities and allows obtaining more clustering information such as the number of clusters, break points between clusters, the boundary of clusters, etc. Extensive experiments on both synthetic and real-world data sets have demonstrated that our proposed method is effective and produces better clustering results when compared to many state-of-the-art clustering algorithms.
Data stream classification with novel class detection: a review, comparison and challenges
Developing effective and efficient data stream classifiers is challenging for the machine learning community because of the dynamic nature of data streams. As a result, many data stream learning algorithms have been proposed during the past decades and achieve great success in various fields. This paper aims to explore a specific type of challenge in learning evolving data streams, called concept evolution (emergence of novel classes). Concept evolution indicates that the underlying patterns evolve over time, and new patterns (classes) may emerge at any time in streaming data. Therefore, data stream classifiers with emerging class detection have received increasing attention in recent years due to the practical values in many real-world applications. In this article, we provide a comprehensive overview of the existing works in this line of research. We discuss and analyze various aspects of the proposed algorithms for data stream classification with concept evolution detection and adaptation. Additionally, we discuss the potential application areas in which these techniques can be used. We also provide a detailed overview of evaluation measures and datasets used in these studies. Finally, we describe the current research challenges and future directions for data stream classification with novel class detection.
Spatiotemporal Variation in NDVI in the Sunkoshi River Watershed During 2000–2021 and Its Response to Climate Factors and Soil Moisture
Given that the Sunkoshi River watershed (located in the southern foot of the Himalayas) is sensitive to climate change and its mountain ecosystem provides important services, we aim to evaluate its spatial and temporal variation patterns of vegetation, represented by the Normalized Difference Vegetation Index (NDVI), during 2000–2021 and identify the dominant driving factors of vegetation change. Based on the NDVI dataset (MOD13A1), we used the simple linear trend model, seasonal and trend decomposition using loess (STL) method, and Mann–Kendall test to investigate the spatiotemporal variation features of NDVI during 2000–2021 on multiple scales (annual, seasonal, monthly). We used the partial correlation coefficient (PCC) to quantify the response of the NDVI to land surface temperature (LST), precipitation, humidity, and soil moisture. The results indicate that the annual NDVI in 52.6% of the study area (with elevation of 1–3 km) increased significantly, while 0.9% of the study area (due to urbanization) degraded significantly during 2000–2021. Daytime LST dominates NDVI changes on spring, summer, and winter scales, while precipitation, soil moisture, and nighttime LST are the primary impact factors on annual NDVI changes. After removing the influence of soil moisture, the contributions of climate factors to NDVI change are enhanced. Precipitation shows a 3-month lag effect and a 5-month cumulative effect on the NDVI; both daytime LST and soil moisture have a 4-month lag effect on the NDVI; and humidity exhibits a 2-month cumulative effect on the NDVI. Overall, the study area turned green during 2000–2021. The dominant driving factors of NDVI change may vary on different time scales. The findings will be beneficial for climate change impact assessment on the regional eco-environment, and for integrated watershed management.
Classification of First-Episode Schizophrenia Using Multimodal Brain Features: A Combined Structural and Diffusion Imaging Study
Abstract Recent neuroanatomical pattern recognition studies have shown some promises for developing an objective neuroimaging-based classification related to schizophrenia. This study explored the feasibility of reliably identifying schizophrenia using single and multimodal multivariate neuroimaging features. Multiple brain measures including regional gray matter (GM) volume, cortical thickness, gyrification, fractional anisotropy (FA), and mean diffusivity (MD) were extracted using fully automated procedures. We used Gradient Boosting Decision Tree to identify the most frequently selected features of each set of neuroanatomical metric and fused multimodal measures. The current classification model was trained and validated based on 98 patients with first-episode schizophrenia (FES) and 106 matched healthy controls (HCs). The classification model was trained and tested in an independent dataset of 54 patients with FES and 48 HCs using imaging data acquired on a different magnetic resonance imaging scanner. Using the most frequently selected features from fused structural and diffusion tensor imaging metrics, a classification accuracy of 75.05% was achieved, which was higher than accuracy derived from a single imaging metric. Most prominent discriminative features included cortical thickness of left transverse temporal gyrus and right parahippocampal gyrus, the FA of left corticospinal tract and right external capsule. In the independent cohort, average accuracy was 76.54%, derived from combined features selected from cortical thickness, gyrification, FA, and MD. These features characterized by GM abnormalities and white matter disruptions have discriminative power with respect to the underlying pathological changes in the brain of individuals having schizophrenia. Our results further highlight the potential advantage of multimodal data fusion for identifying schizophrenia.
Common and distinct changes of default mode and salience network in schizophrenia and major depression
Brain imaging reveals schizophrenia as a disorder of macroscopic brain networks. In particular, default mode and salience network (DMN, SN) show highly consistent alterations in both interacting brain activity and underlying brain structure. However, the same networks are also altered in major depression. This overlap in network alterations induces the question whether DMN and SN changes are different across both disorders, potentially indicating distinct underlying pathophysiological mechanisms. To address this question, we acquired T1-weighted, diffusion-weighted, and resting-state functional MRI in patients with schizophrenia, patients with major depression, and healthy controls. We measured regional gray matter volume, inter-regional structural and intrinsic functional connectivity of DMN and SN, and compared these measures across groups by generalized Wilcoxon rank tests, while controlling for symptoms and medication. When comparing patients with controls, we found in each patient group SN volume loss, impaired DMN structural connectivity, and aberrant DMN and SN functional connectivity. When comparing patient groups, SN gray matter volume loss and DMN structural connectivity reduction did not differ between groups, but in schizophrenic patients, functional hyperconnectivity between DMN and SN was less in comparison to depressed patients. Results provide evidence for distinct functional hyperconnectivity between DMN and SN in schizophrenia and major depression, while structural changes in DMN and SN were similar. Distinct hyperconnectivity suggests different pathophysiological mechanism underlying aberrant DMN-SN interactions in schizophrenia and depression.
Aberrant Intrinsic Connectivity of Hippocampus and Amygdala Overlap in the Fronto-Insular and Dorsomedial-Prefrontal Cortex in Major Depressive Disorder
Neuroimaging studies of major depressive disorder (MDD) have consistently observed functional and structural changes of the hippocampus (HP) and amygdale (AY). Thus, these brain regions appear to be critical elements of the pathophysiology of MDD. The HP and AY directly interact and show broad and overlapping intrinsic functional connectivity (iFC) to other brain regions. Therefore, we hypothesized the HP and AY would show a corresponding pattern of aberrant intrinsic connectivity in MDD. Resting-state functional MRI was acquired from 21 patients with MDD and 20 healthy controls. ß-Maps of region-of-interest-based FC for bilateral body of the HP and basolateral AY were used as surrogates for iFC of the HP and AY. Analysis of variance was used to compare ß-maps between MDD and healthy control groups, and included covariates for age and gender as well as gray matter volume of the HP and AY. The HP and AY of MDD patient's showed an overlapping pattern of reduced FC to the dorsomedial-prefrontal cortex and fronto-insular operculum. Both of these regions are known to regulate the interactions among intrinsic networks (i.e., default mode, central executive, and salience networks) that are disrupted in MDD. These results provide the first evidence of overlapping aberrant HP and AY intrinsic connectivity in MDD. Our findings suggest that aberrant HP and AY connectivity may interact with dysfunctional intrinsic network activity in MDD.
Plasma Figure Correction Method Based on Multiple Distributed Material Removal Functions
In the process of plasma figure correction for a quartz sub-mirror, the plasma parallel removal process and ink masking layer are combined for the first time. A universal plasma figure correction method based on multiple distributed material removal functions is demonstrated, and its technological characteristics are analyzed. Through this method, the processing time is independent of the workpiece aperture, which saves time for the material removal function to scan along the trajectory. After seven iterations, the form error of the quartz element is converged from the initial figure error of ~114 nm RMS to a figure error of ~28 nm RMS, which shows the practical potential of the plasma figure correction method based on multiple distributed material removal functions in optical element manufacturing and the possibility of becoming a new stage process in the optical manufacturing chain.
Music Intervention Leads to Increased Insular Connectivity and Improved Clinical Symptoms in Schizophrenia
Schizophrenia is a syndrome that is typically accompanied by delusions and hallucinations that might be associated with insular pathology. Music intervention, as a complementary therapy, is commonly used to improve psychiatric symptoms in the maintenance stage of schizophrenia. In this study, we employed a longitudinal design to assess the effects of listening to Mozart music on the insular functional connectivity (FC) in patients with schizophrenia. Thirty-six schizophrenia patients were randomly divided into two equal groups as follows: the music intervention (MTSZ) group, which received a 1-month music intervention series combined with antipsychotic drugs, and the no-music intervention (UMTSZ) group, which was treated solely with antipsychotic drugs. Resting-state functional magnetic resonance imaging (fMRI) scans were performed at the following three timepoints: baseline, 1 month after baseline and 6 months after baseline. Nineteen healthy participants were recruited as controls. An FC analysis seeded in the insular subregions and machine learning techniques were used to examine intervention-related changes. After 1 month of listening to Mozart music, the MTSZ showed increased FC in the dorsal anterior insula (dAI) and posterior insular (PI) networks, including the dAI-ACC, PI-pre/postcentral cortices, and PI-ACC connectivity. However, these enhanced FCs had vanished in follow-up visits after 6 months. Additionally, a support vector regression on the FC of the dAI-ACC at baseline yielded a significant prediction of relative symptom remission in response to music intervention. Furthermore, the validation analyses revealed that 1 month of music intervention could facilitate improvement of the insular FC in schizophrenia. Together, these findings revealed that the insular cortex could potentially be an important region in music intervention for patients with schizophrenia, thus improving the patients' psychiatric symptoms through normalizing the salience and sensorimotor networks.