Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
50 result(s) for "Sharko, Fedor S"
Sort by:
Steller’s sea cow genome suggests this species began going extinct before the arrival of Paleolithic humans
Anthropogenic activity is the top factor directly related to the extinction of several animal species. The last Steller’s sea cow ( Hydrodamalis gigas ) population on the Commander Islands (Russia) was wiped out in the second half of the 18 th century due to sailors and fur traders hunting it for the meat and fat. However, new data suggests that the extinction process of this species began much earlier. Here, we present a nuclear de novo assembled genome of H. gigas with a 25.4× depth coverage. Our results demonstrate that the heterozygosity of the last population of this animal is low and comparable to the last woolly mammoth population that inhabited Wrangel Island 4000 years ago. Besides, as a matter of consideration, our findings also demonstrate that the extinction of this marine mammal starts along the North Pacific coastal line much earlier than the first Paleolithic humans arrived in the Bering sea region. A newly assembled Steller’s sea cow genome suggests that this marine mammal had low levels of genetic diversity and began to go extinct along the North Pacific coastline much earlier than when the first Paleolithic humans arrived in the Bering sea region.
A partial genome assembly of the miniature parasitoid wasp, Megaphragma amalphitanum
Body size reduction, also known as miniaturization, is an important evolutionary process that affects a number of physiological and phenotypic traits and helps animals conquer new ecological niches. However, this process is poorly understood at the molecular level. Here, we report genomic and transcriptomic features of arguably the smallest known insect–the parasitoid wasp, Megaphragma amalphitanum (Hymenoptera: Trichogrammatidae). In contrast to expectations, we find that the genome and transcriptome sizes of this parasitoid wasp are comparable to other members of the Chalcidoidea superfamily. Moreover, compared to other chalcid wasps the gene content of M. amalphitanum is remarkably conserved. Intriguingly, we observed significant changes in M. amalphitanum transposable element dynamics over time, in which an initial burst was followed by suppression of activity, possibly due to a recent reinforcement of the genome defense machinery. Overall, while the M. amalphitanum genomic data reveal certain features that may be linked to the unusual biological properties of this organism, miniaturization is not associated with a large decrease in genome complexity.
SNP-Based Analysis Reveals Authenticity and Genetic Similarity of Russian Indigenous V. vinifera Grape Cultivars
9 Russian Vitis vinifera grape varieties and the European variety Muscat Hamburg were sequenced and genotyped using 527 SNPs (single nucleotide polymorphisms) with high minor allele frequency for the first time. The data were coupled with previously identified genotypes of 783 varieties and subjected to parentage and population analysis. As a result, contrary to the historical and ampelographic data published in many sources from 1800 to 2012, only two of the nine Russian varieties (Pukhlyakovskiy Belyi and Sibirkovyi) were related to foreign ones and were obviously imported from Europe to the Russian Empire. The remaining seven varieties, led by Krasnostop Zolotovskiy, are not directly related either in the Caucasus or in Europe, they form separate clusters on the genetic distance-based dendrogram and the world parentage network of V. vinifera. The resulting pedigree of Muscat Hamburg and its descendants is in accordance with SSR-based (simple sequence repeats) studies and the described pedigree of this variety which confirms the use of the reduced SNP set for further studies.
Metagenomic profiling of viral and microbial communities from the pox lesions of lumpy skin disease virus and sheeppox virus-infected hosts
It has been recognized that capripoxvirus infections have a strong cutaneous tropism with the manifestation of skin lesions in the form of nodules and scabs in the respective hosts, followed by necrosis and sloughing off. Considering that the skin microbiota is a complex community of commensal bacteria, fungi and viruses that are influenced by infections leading to pathological states, there is no evidence on how the skin microbiome is affected during capripoxvirus pathogenesis. In this study, shotgun metagenomic sequencing was used to investigate the microbiome in pox lesions from hosts infected with lumpy skin disease virus and sheep pox virus. The analysis revealed a high degree of variability in bacterial community structures across affected skin samples, indicating the importance of specific commensal microorganisms colonizing individual hosts. The most common and abundant bacteria found in scab samples were , , and , irrespective of host. Bacterial reads belonging to the genera , , , and were identified. This study is the first to investigate capripox virus-associated changes in the skin microbiome using whole-genome metagenomic profiling. The findings will provide a basis for further investigation into capripoxvirus pathogenesis. In addition, this study highlights the challenge of selecting an optimal bioinformatics approach for the analysis of metagenomic data in clinical and veterinary practice. For example, direct classification of reads using a kmer-based algorithm resulted in a significant number of systematic false positives, which may be attributed to the peculiarities of the algorithm and database selection. On the contrary, the process of assembly requires a large number of target reads from the symbiotic microbial community. In this work, the obtained sequencing data were processed by three different approaches, including direct classification of reads based on k-mers, mapping of reads to a marker gene database, and assembly and binning of metagenomic contigs. The advantages and disadvantages of these techniques and their practicality in veterinary settings are discussed in relation to the results obtained.
The complete mitochondrial genome of the extinct Pleistocene horse (Equus cf. lenensis) from Kotelny Island (New Siberian Islands, Russia) and its phylogenetic assessment
The complete mitochondrial genome from the Pleistocene stallion horse (Equus cf. lenensis) which complete skull was found in 1901 on Kotelny Island (New Siberian Archipelago, Sakha Republic, Russia) is published in this paper. The mitochondrial DNA (mtDNA) is 16,584 base pairs (bp) in length and contained 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes. The overall base composition of the genome in descending order was 32.3% – A, 28.5% – C, 13.4% – G, 25.8% - T without a significant AT bias of 58.2%.
Koban culture genome-wide and archeological data open the bridge between Bronze and Iron Ages in the North Caucasus
The North Caucasus played a key role during the ancient colonization of Eurasia and the formation of its cultural and genetic ancestry. Previous archeogenetic studies described a relative genetic and cultural continuity of ancient Caucasus societies, since the Eneolithic period. The Koban culture, which formed in the Late Bronze Age on the North Caucasian highlands, is considered as a cultural “bridge” between the ancient and modern autochthonous peoples of the Caucasus. Here, we discuss the place of this archeological culture and its representatives in the genetic orbit of Caucasian cultures using genome-wide SNP data from five individuals of the Koban culture and one individual of the early Alanic culture as well as previously published genomic data of ancient and modern North Caucasus individuals. Ancient DNA analysis shows that an ancient individual from Klin-Yar III, who was previously described as male, was in fact a female. Additional studies on well-preserved ancient human specimens are necessary to determine the level of local mobility and kinship between individuals in ancient societies of North Caucasus. Further studies with a larger sample size will allow us gain a deeper understanding of this topic.
Two complete mitochondrial genomes of extinct form of the Sevan trout Salmo ischchan danilewskii
The mitochondrial genomes from two individuals of the extinct subspecies of the Sevan trout Salmo ischchan danilewskii are published in this paper. The mitochondrial DNA (mtDNA) is 16,665 base pairs (bp) in length and contained 13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes. The overall base composition of the genome in descending order was 27.9% of A, 29.4% of C, 16.7% of G, and 26.0% of T without a significant AT bias of 53.9%.
Sequencing of two mitochondrial genomes of endangered form of the Sevan trout Salmo ischchan aestivalis
The two complete mitochondrial genomes of endangered form of the Sevan trout Salmo ischchan aestivalis are published in this paper. The mitochondrial DNA (mtDNA) is 16,677 base pairs (bp) in length and contained 13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes. The overall base composition of the genome in descending order was 29.4% - C, 27.9% - A, 26.0% - T, 16.7% - G, without a significant AT bias of 53.9%.
Molecular phylogeny of one extinct and two critically endangered Central Asian sturgeon species (genus Pseudoscaphirhynchus) based on their mitochondrial genomes
The enigmatic and poorly studied sturgeon genus Pseudoscaphirhynchus (Scaphirhynchinae: Acipenseridae) comprises three species: the Amu Darya shovelnose sturgeon (Pseudoscaphirhynchus kaufmanni (Bogdanow)), dwarf Amu Darya shovelnose sturgeon P. hermanni (Kessler), and Syr Darya shovelnose sturgeon (P. fedtschenkoi (Bogdanow). Two species – P. hermanni and P. kaufmanni – are critically endangered due to the Aral Sea area ecological disaster, caused by massive water use for irrigation to support cotton agriculture, subsequent pesticide pollution and habitat degradation. For another species – P. fedtschenkoi – no sightings have been reported since 1960-s and it is believed to be extinct, both in nature and in captivity. In this study, complete mitochondrial (mt) genomes of these three species of Pseudoscaphirhynchus were characterized using Illumina and Sanger sequencing platforms. Phylogenetic analyses showed the significant divergence between Amu Darya and Syr Darya freshwater sturgeons and supported the monophyletic origin of the Pseudoscaphirhynchus species. We confirmed that two sympatric Amu Darya species P. kaufmanni and P. hermanni form a single genetic cluster, which may require further morphological and genetic study to assess possible hybridization, intraspecific variation and taxonomic status and to develop conservation measures to protect these unique fishes.