Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4,359 result(s) for "Sharma, N. K."
Sort by:
Assessment of the diagnostic accuracy of Vibrasense compared to a biothesiometer and nerve conduction study for screening diabetic peripheral neuropathy
Aims Peripheral neuropathy is a common microvascular complication in diabetes and a risk factor for the development of diabetic foot ulcers and amputations. Vibrasense (Ayati Devices) is a handheld, battery-operated, rapid screening device for diabetic peripheral neuropathy (DPN) that works by quantifying vibration perception threshold (VPT). In this study, we compared Vibrasense against a biothesiometer and nerve conduction study for screening DPN. Methods A total of 562 subjects with type 2 diabetes mellitus underwent neuropathy assessments including clinical examination, 10-g monofilament test, VPT evaluation with Vibrasense and a standard biothesiometer. Those with an average VPT ≥ 15 V with Vibrasense were noted to have DPN. A subset of these patients ( N  = 61) underwent nerve conduction study (NCS). Diagnostic accuracy of Vibrasense was compared against a standard biothesiometer and abnormal NCS. Results Average VPTs measured with Vibrasense had a strong positive correlation with standard biothesiometer values (Spearman’s correlation 0.891, P  < 0.001). Vibrasense showed sensitivity and specificity of 87.89% and 86.81% compared to biothesiometer, and 82.14% and 78.79% compared to NCS, respectively. Conclusions Vibrasense demonstrated good diagnostic accuracy for detecting peripheral neuropathy in type 2 diabetes and can be an effective screening device in routine clinical settings. Trial registration Clinical trials registry of India (CTRI/2022/11/047002). Registered 3 November 2022.  https://ctri.nic.in/Clinicaltrials/pmaindet2.php?trialid=76167 .
Impacts of Soil Erosion on Soil Quality and Agricultural Sustainability in the North-Western Himalayan Region of India
Erosion by water reduces soil quality and hence crop yield. Understanding the response of crop yields to soil erosion is vital in assessing agriculture’s vulnerability to erosion. However, these effects are difficult to quantify. The study presents a quantitative relationship between soil erosion and soil quality and productivity of rainfed wheat (Triticum aestivum) by comparing field plots with different degrees of erosion in some sub-tropical alfisols in the Doon Valley region of India. By comparing the topsoil depth with the reference site as the control, erosion severity was classified into different phases such as slight, moderate, severe, and very severe. A quantitative, weighted additive model was used to evaluate soil quality for different phases of erosion using soil clay content, water holding capacity, soil aggregate, soil organic carbon, pH, CEC, total N, available P, and available K. The synthesis of long-term experimental data revealed that the mean soil erosion rate varied from 5.5 Mg ha−1 yr−1 in slightly eroded plots to 33.4 Mg ha−1 yr−1 in very severely eroded plots. Compared with the reference forest, the soil organic carbon (SOC) declined by 81.4% and water holding capacity by 31% in severely eroded soils. A substantial loss of total N, extractable P, and available K was also observed. Water stable aggregates (WSA) decreased from 86% to 12.6%, and the cation exchange capacity (CEC) from 25 to 12.6 c mol(+) kg−1. The soil quality index was 0.7 in slightly eroded compared with 0.4 in severely eroded soil. Similarly, the sustainable yield index for wheat was 0.9 and 0.6 for slightly and severely eroded soils, respectively. Thus, there is a strong need to identify land management systems that reduce erosion risks, restore eroded soils, and enhance soil quality.
Sustainable Water Harvesting for Improving Food Security and Livelihoods of Smallholders under Different Climatic Conditions of India
In India, the per capita availability of water is projected to be 1465 m3 and 1235 m3 by the years 2025 and 2050, respectively, and hence, India would be a water-stressed country as per the United Nations’ standard of less than 1700 m3 per capita water availability. India is predominantly an agricultural-dominant country. Rainfed agriculture in the country contributes 40% of food grain production and supports half of the human population and two-thirds of the livestock population. The country has 15 different agro-climatic zones, and each agro-climatic region has its own constraints of water availability and management along with the potential for their optimum utilization. Such situations warrant the formulation of regional-level strategies. Efforts were made to integrate and evaluate the feasibility of water harvesting and its utilization at twelve different sites representing six different agro-climatic conditions spanning pan India. It was found that water harvesting through tanks/ponds is a feasible approach and can increase the crop production as well as diversification. The results reveal that the range of crop diversification index increased from 0.49–0.85 to 0.65–0.98; the crop productivity index increased from 0.28–0.66 to 0.66–0.90; the cultivated land utilization index increased from 0.05–0.69 to 0.34–0.84; and the crop water productivity index increased from 0.20–0.51 to 0.56–0.96, among other production and diversification indices, due to additional water availability through rainwater harvesting intervention. Moreover, the gross return increased from INR 43,768–704,356 to INR 220,840–1,469,108 ha−1, representing a 108 to 400% increase in the returns due to the availability of water. The findings of this study suggest that the water harvesting in small ponds/tanks is economical and feasible, requires less technological intervention, and increases crop diversification in all the studied agro-climatic conditions, and hence, the same needs to be encouraged in the rainfed areas of the country.
Design of Low-Cost Solar Parabolic Through Steam Sterilization
The objective of this study is to develop a low cost solar parabolic trough that can be used for steam sterilization of medical instruments in small clinics where electricity is scarce and expensive. On the basis of theoretical concepts of parabola and focus-balanced parabola, the assembly of ribs and reflector sheet with evacuated tube and heat pipe has been done. The parabolic trough has been mounted on a trolley so that it can be moved easily according to direction of sun light. The designed solar parabolic trough was integrated with pressure cooker under various setups and experiments were conducted to test whether sterilization is taking place or not. To validate sterilization process, tests were also conducted by placing the infected medical instruments. The solar parabolic trough developed was able to generate and maintain steam at 121 degrees Celsius at pressure 15 psig (101.3 kN/m2) for 15 minutes. The solar parabolic trough developed was effective in sterilizing the medical instruments.
3D biofabrication of vascular networks for tissue regeneration: A report on recent advances
Rapid progress in tissue engineering research in past decades has opened up vast possibilities to tackle the challenges of generating tissues or organs that mimic native structures. The success of tissue engineered constructs largely depends on the incorporation of a stable vascular network that eventually anastomoses with the host vasculature to support the various biological functions of embedded cells. In recent years, significant progress has been achieved with respect to extrusion, laser, micro-molding, and electrospinning-based techniques that allow the fabrication of any geometry in a layer-by-layer fashion. Moreover, decellularized matrix, self-assembled structures, and cell sheets have been explored to replace the biopolymers needed for scaffold fabrication. While the techniques have evolved to create specific tissues or organs with outstanding geometric precision, formation of interconnected, functional, and perfused vascular networks remains a challenge. This article briefly reviews recent progress in 3D fabrication approaches used to fabricate vascular networks with incorporated cells, angiogenic factors, proteins, and/or peptides. The influence of the fabricated network on blood vessel formation, and the various features, merits, and shortcomings of the various fabrication techniques are discussed and summarized. [Display omitted] •Recent developments in direct/indirect extrusion-based fabrication techniques in vasculature formation.•Current status of laser-based, nano-scale, and biopolymer-free fabrication techniques in vascularization.•Highlights on the recent progress in micro-pattern and micro-module assemblies for vascularization.•Influence of decellularized matrix and mechanical spacer in tissue vascularization.
Evidence base of yoga studies on cardiovascular health: A bibliometric analysis
Noncommunicable diseases including coronary artery disease contribute to approximately 50% of global mortality. Pharmacological treatment alone may not be a panacea for such diseases since it may be associated with various other adverse effects. Hence, strategies such as Yoga involving healthy lifestyle and stress management are widely sought by the patient population. Materials and Methods: An electronic search of PubMed as a standard bibliographic database was performed through February 2015 using the keywords \"Yoga\" and \"Cardiovascular.\" Studies with Yoga as the independent variable and parameters related to cardiac health as the dependent variable were included and exclusion criteria were applied. Results: A total of 149 publications were identified which met the inclusion criteria for analysis. Of the total publications, 44% were clinical trials of which 19% were randomized controlled trials which may be categorized as high-quality ones. An upward trend in the overall research in this area is evident. Major work has been accomplished by researchers of the United States (38%) and India (29%). Conclusion: The survey indicates that the number of publications in the field of \"Yoga\" and \"Cardiovascular\" health has increased rapidly in the late years. Analysis comprising the nation/state helps define its status with regard to its counterparts and helps understand science priorities and disease control strategies in an effort to provide cost-effectiveness and quality control. There is a need for further high-quality studies in the field of \"Yoga\" and \"Cardiovascular\" diseases to validate the effects of Yoga on health parameters.
Impact of agro-geotextiles on soil aggregation and organic carbon sequestration under a conservation-tilled maize-based cropping system in the Indian Himalayas
Although agro-geotextile (AGT) emplacement shows potential to mitigate soil loss and, thus, increase carbon sequestration, comprehensive information is scanty on the impact of using agro-geotextiles on soil organic carbon (SOC) sequestration, aggregate-associated C, and soil loss in the foothills of the Indian Himalayan Region. We evaluated the impacts of Arundo donax AGT in different configurations on SOC sequestration, aggregate stability, and carbon management index (CMI) since 2017 under maize-based cropping systems on a 4% land slope, where eight treatment procedures were adopted. The results revealed that A. donax placement at 0.5-m vertical-interval pea–wheat (M + AD10G 0.5 -P-W) treatment had ∼23% increase in SOC stock (27.87 Mg·ha −1 ) compared to the maize–wheat (M-W) system in the 0–30-cm soil layer. M + AD10G 0.5 -P-W and maize–pea–wheat treatments under bench terracing (M-P-W) BT had similar impacts on SOC stocks in that layer after 5 years of cropping. The total SOC values in bulk soils, macroaggregates, and microaggregates were ∼24, 20, and 31% higher, respectively, in plots under M + AD10G0.5-P-W treatment than M-W in the topsoil (0–5 cm). The inclusion of post-rainy season vegetable pea in the maize–wheat cropping system, along with AGT application and crop residue management, generated additional biomass and enhanced CMI by ∼60% in the plots under M + AD10G0.5-P-W treatment over M-W, although M + AD10G0.5-P-W and (M-P-W) BT had similar effects in the topsoil. In the 5–15-cm layer, there was no significant effect of soil conservation practices on CMI values. Under the M + AD10G0.5-P-W treatment, the annual mean soil loss decreased by ∼92% over M-W treatment. We observed that CMI, proportion of macroaggregates, aggregate-associated C, labile C, total SOC concentration (thus, SOC accumulation rate), and mean annual C input were strongly correlated with the mean annual soil loss from 2017 to 2021. The study revealed that the emplacement of an A. donax mat and incorporation of a legume in a cropping system (M-W), conservation tillage, and crop residue retention not only prevented soil loss but also enhanced C sequestration compared to farmers’ practice (M-W) in the Indian Himalayas. The significance of this study is soil conservation, recycling of residues and weeds, and climate change adaptation and mitigation, as well as increasing farmers’ income.
Length–weight relationships for eight fish species from the Ravi River, north‐western India
Length–weight relationships (LWRs) were evaluated for Badis badis (n = 25), Sperata seenghala (n = 26), Labeo gonius (n = 34), Rasbora rasbora (n = 30), Bagarius bagarius (n = 24), Gagata cenia (n = 27), Glyptothorax stoliczkae (n = 24) and Channa orientalis (n = 28) from the Ravi River tributary in North India. Altogether 218 samples of eight species were obtained between May and November 2014 using cast nets and gill nets. LWRs for these species were unknown to FishBase, and new maximum lengths were recorded for two of these species.
A novel leaf rust resistance gene introgressed from Aegilops markgrafii maps on chromosome arm 2AS of wheat
Key messageA novel leaf rust resistance gene, LrM, introgressed from Aegilops markgrafii and mapped on chromosome 2AS using SSR- and SNP-based PCR markers will aid in broadening the genetic base of rust resistance in wheat.A new leaf rust resistance gene tentatively named LrM was introgressed from the diploid non-progenitor species Ae. markgrafii (2n = 2x = 14, genome CC) into common wheat using the nulli-5B mechanism. The introgression line ER9-700 showed a high degree of resistance against a wide spectrum of Puccinia triticina pathotypes. Genetic analysis was performed using the F1, F2, F2:3 and BC1F1 generations derived from the cross ER9-700/Agra Local. The results showed a single dominant gene for leaf rust resistance. The resistance gene LrM was mapped on chromosome arm 2AS using SSR- and SNP-based PCR markers. Preliminary mapping with SSR markers in the F2:3 population from the cross ER9-700/Agra Local identified two SSR markers flanking the LrM. SNPs were identified in the genomic region flanked by SSR markers, and SNP-based PCR markers were developed to construct the final map. Three SNP-based PCR markers co-segregated and mapped closest to the resistance gene at a distance of 2 cM. The gene LrM was distinguished from all the other genes designated and mapped on chromosome arm 2AS by molecular markers and rust reaction. All five markers used in the mapping amplified identical alleles in the donor Ae. markgrafii accession and introgression line ER9-700. The chromosomal location and rust reaction suggest that LrM is a novel leaf rust resistance gene that may be useful in broadening the genetic base of leaf rust resistance in wheat.
Novice lifters exhibit a more kyphotic lifting posture than experienced lifters in straight-leg lifting
As torso flexion and repetitive lifting are known risk factors for low back pain and injury, it is important to investigate lifting techniques that might reduce injury during repetitive lifting. By normalizing lumbar posture to a subject's range of motion (ROM), as a function of torso flexion, this research examined when subjects approached their range of motion limits during dynamic lifting tasks. For this study, it was hypothesized that experienced lifters would maintain a more neutral lumbar angle relative to their range of motion, while novice lifters would approach the limits of their lumbar ROM during the extension phase of a straight-leg lift. The results show a statistically significant difference in lifting patterns for these two groups supporting this hypothesis. The novice group maintained a much more kyphotic lumbar angle for both the flexion (74% of the lumbar angle ROM) and extension phases (86% of the lumbar angle ROM) of the lifting cycle, while the experienced group retained a more neutral curvature throughout the entire lifting cycle (37% of lumbar angle ROM in flexion and 48% of lumbar angle ROM in extension). By approaching the limits of their range of motion, the novice lifters could be at greater risk of injury by placing greater loads on the supporting soft tissues of the spine. Future research should examine whether training subjects to assume more neutral postures during lifting could indeed lower injury risks.