Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Sharma, Samridh"
Sort by:
Improving the normalization of complex interventions: part 2 - validation of the NoMAD instrument for assessing implementation work based on normalization process theory (NPT)
Introduction Successful implementation and embedding of new health care practices relies on co-ordinated, collective behaviour of individuals working within the constraints of health care settings. Normalization Process Theory (NPT) provides a theory of implementation that emphasises collective action in explaining, and shaping, the embedding of new practices. To extend the practical utility of NPT for improving implementation success, an instrument (NoMAD) was developed and validated. Methods Descriptive analysis and psychometric testing of an instrument developed by the authors, through an iterative process that included item generation, consensus methods, item appraisal, and cognitive testing. A 46 item questionnaire was tested in 6 sites implementing health related interventions, using paper and online completion. Participants were staff directly involved in working with the interventions. Descriptive analysis and consensus methods were used to remove redundancy, reducing the final tool to 23 items. Data were subject to confirmatory factor analysis which sought to confirm the theoretical structure within the sample. Results We obtained 831 completed questionnaires, an average response rate of 39% (range: 22–77%). Full completion of items was 50% ( n  = 413). The confirmatory factor analysis showed the model achieved acceptable fit (CFI = 0.95, TLI = 0.93, RMSEA = 0.08, SRMR = 0.03). Construct validity of the four theoretical constructs of NPT was supported, and internal consistency (Cronbach’s alpha) were as follows: Coherence (4 items, α = 0.71); Collective Action (7 items, α = 0.78); Cognitive Participation (4 items, α = 0.81); Reflexive Monitoring (5 items, α = 0.65). The normalisation scale overall, was highly reliable (20 items, α = 0.89). Conclusions The NoMAD instrument has good face validity, construct validity and internal consistency, for assessing staff perceptions of factors relevant to embedding interventions that change their work practices. Uses in evaluating and guiding implementation are proposed.
Towards a Zero-Carbon Electricity System for India in 2050: IDEEA Model-Based Scenarios Integrating Wind and Solar Complementarity and Geospatial Endowments
This study evaluated a potential transition of India’s power sector to 100% wind and solar energy sources. Applying a macro-energy IDEEA (Indian Zero Carbon Energy Pathways) model to 32 regions and 114 locations of potential installation of wind energy and 60 locations of solar energy, we evaluated a 100% renewable power system in India as a concept. We considered 153 scenarios with varying sets of generating and balancing technologies to evaluate each intermittent energy source separately and their complementarity. Our analysis confirms the potential technical feasibility and long-term reliability of a 100% renewable system for India, even with solar and wind energy only. Such a dual energy source system can potentially deliver fivefold the annual demand of 2019. The robust, reliable supply can be achieved in the long term, as verified by 41 years of weather data. The required expansion of energy storage and the grid will depend on the wind and solar energy structure and the types of generating technologies. Solar energy mostly requires intraday balancing that can be achieved through storage or demand-side flexibility. Wind energy is more seasonal and spatially scattered, and benefits from the long-distance grid expansion for balancing. The complementarity of the two resources on a spatial scale reduces requirements for energy storage. The demand-side flexibility is the key in developing low-cost supply with minimum curtailments. This can be potentially achieved with the proposed two-level electricity market where electricity prices reflect variability of the supply. A modelled experiment with price signals demonstrates how balancing capacity depends on the price levels of guaranteed and flexible types of loads, and therefore, can be defined by the market.