Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
324
result(s) for
"Sharma, Sanjeev K."
Sort by:
Photobiomodulation with Pulsed and Continuous Wave Near-Infrared Laser (810 nm, Al-Ga-As) Augments Dermal Wound Healing in Immunosuppressed Rats
by
Sharma, Sanjeev K.
,
Keshri, Gaurav K.
,
Singh, Shashi Bala
in
Actin
,
Adenosine Triphosphate - metabolism
,
Angiogenesis
2016
Chronic non-healing cutaneous wounds are often vulnerable in one or more repair phases that prevent normal healing and pose challenges to the use of conventional wound care modalities. In immunosuppressed subject, the sequential stages of healing get hampered, which may be the consequences of dysregulated or stagnant wound inflammation. Photobiomodulation (PBM) or low-level laser (light) therapy (LLLT) emerges as a promising drug-free, non-invasive biophysical approach for promoting wound healing, reduction of inflammation, pain and restoration of functions. The present study was therefore undertaken to evaluate the photobiomodulatory effects of 810 nm diode laser (40 mW/cm2; 22.6 J/cm2) with pulsed (10 and 100 Hz, 50% duty cycle) and continuous wave on full-thickness excision-type dermal wound healing in hydrocortisone-induced immunosuppressed rats. Results clearly delineated that 810 nm PBM at 10 Hz was more effective over continuous and 100 Hz frequency in accelerating wound healing by attenuating the pro-inflammatory markers (NF-kB, TNF-α), augmenting wound contraction (α-SM actin), enhancing cellular proliferation, ECM deposition, neovascularization (HIF-1α, VEGF), re-epithelialization along with up-regulated protein expression of FGFR-1, Fibronectin, HSP-90 and TGF-β2 as compared to the non-irradiated controls. Additionally, 810 nm laser irradiation significantly increased CCO activity and cellular ATP contents. Overall, the findings from this study might broaden the current biological mechanism that could be responsible for photobiomodulatory effect mediated through pulsed NIR 810 nm laser (10 Hz) for promoting dermal wound healing in immunosuppressed subjects.
Journal Article
Diverse electrical responses in a network of fractional-order conductance-based excitable Morris-Lecar systems
by
Mondal, Argha
,
Hens, Chittaranjan
,
Kaslik, Eva
in
631/114/116/2393
,
639/705/1041
,
Action Potentials - physiology
2023
The diverse excitabilities of cells often produce various spiking-bursting oscillations that are found in the neural system. We establish the ability of a fractional-order excitable neuron model with Caputo’s fractional derivative to analyze the effects of its dynamics on the spike train features observed in our results. The significance of this generalization relies on a theoretical framework of the model in which memory and hereditary properties are considered. Employing the fractional exponent, we first provide information about the variations in electrical activities. We deal with the 2D class I and class II excitable Morris-Lecar (M-L) neuron models that show the alternation of spiking and bursting features including MMOs & MMBOs of an uncoupled fractional-order neuron. We then extend the study with the 3D slow-fast M-L model in the fractional domain. The considered approach establishes a way to describe various characteristics similarities between fractional-order and classical integer-order dynamics. Using the stability and bifurcation analysis, we discuss different parameter spaces where the quiescent state emerges in uncoupled neurons. We show the characteristics consistent with the analytical results. Next, the Erdös-Rényi network of desynchronized mixed neurons (oscillatory and excitable) is constructed that is coupled through membrane voltage. It can generate complex firing activities where quiescent neurons start to fire. Furthermore, we have shown that increasing coupling can create cluster synchronization, and eventually it can enable the network to fire in unison. Based on cluster synchronization, we develop a reduced-order model which can capture the activities of the entire network. Our results reveal that the effect of fractional-order depends on the synaptic connectivity and the memory trace of the system. Additionally, the dynamics captures spike frequency adaptation and spike latency that occur over multiple timescales as the effects of fractional derivative, which has been observed in neural computation.
Journal Article
Resisting Potato Cyst Nematodes With Resistance
by
Jones, John T.
,
Kuhl, Joseph C.
,
Blok, Vivian C.
in
Agricultural production
,
Breeding
,
Control methods
2021
Potato cyst nematodes (PCN) are economically important pests with a worldwide distribution in all temperate regions where potatoes are grown. Because above ground symptoms are non-specific, and detection of cysts in the soil is determined by the intensity of sampling, infestations are frequently spread before they are recognised. PCN cysts are resilient and persistent; their cargo of eggs can remain viable for over two decades, and thus once introduced PCN are very difficult to eradicate. Various control methods have been proposed, with resistant varieties being a key environmentally friendly and effective component of an integrated management programme. Wild and landrace relatives of cultivated potato have provided a source of PCN resistance genes that have been used in breeding programmes with varying levels of success. Producing a PCN resistant variety requires concerted effort over many years before it reaches what can be the biggest hurdle—commercial acceptance. Recent advances in potato genomics have provided tools to rapidly map resistance genes and to develop molecular markers to aid selection during breeding. This review will focus on the translation of these opportunities into durably PCN resistant varieties.
Journal Article
Alkaliphilic bacteria: applications in industrial biotechnology
by
Sarethy, Indira P
,
Kapoor, Aditi
,
Gupta, Vandana
in
Antibiotics
,
Bacteria
,
Bacteria - enzymology
2011
Alkaliphiles are interesting groups of extremophilic organisms that thrive at pH of 9.0 and above. Many of their products, in particular enzymes, have found widespread applications in industry, primarily in the detergent and laundry industries. While the enzymes have been a runaway success from the industrial point of view, many more products have been reported from alkaliphiles such as antibiotics and carotenoids. Less known are their potential for degradation of xenobiotics. They also play a key role in biogeocycling of important inorganic compounds. This review provides an insight into the huge diversity of alkaliphilic bacteria, the varied products obtained from them, and the need for further investigations on these interesting bacteria.
Journal Article
Recent advancements in metal oxide‐based hybrid nanocomposite resistive random‐access memories for artificial intelligence
by
Kumar, Anirudh
,
Kumar, Mohit
,
Bhardwaj, Kirti
in
Artificial intelligence
,
Artificial neural networks
,
Automation
2025
Artificial intelligence (AI) advancements are driving the need for highly parallel and energy‐efficient computing analogous to the human brain and visual system. Inspired by the human brain, resistive random‐access memories (ReRAMs) have recently emerged as an essential component of the intelligent circuitry architecture for developing high‐performance neuromorphic computing systems. This occurs due to their fast switching with ultralow power consumption, high ON/OFF ratio, excellent data retention, good endurance, and even great possibilities for altering resistance analogous to their biological counterparts for neuromorphic computing applications. Additionally, with the advantages of photoelectric dual modulation of resistive switching, ReRAMs allow optically inspired artificial neural networks and reconfigurable logic operations, promoting innovative in‐memory computing technology for neuromorphic computing and image recognition tasks. Optoelectronic neuromorphic computing architectured ReRAMs can simulate neural functionalities, such as light‐triggered long‐term/short‐term plasticity. They can be used in intelligent robotics and bionic neurological optoelectronic systems. Metal oxide (MOx)–polymer hybrid nanocomposites can be beneficial as an active layer of the bistable metal–insulator–metal ReRAM devices, which hold promise for developing high‐performance memory technology. This review explores the state of the art for developing memory storage, advancement in materials, and switching mechanisms for selecting the appropriate materials as active layers of ReRAMs to boost the ON/OFF ratio, flexibility, and memory density while lowering programming voltage. Furthermore, material design cum‐synthesis strategies that greatly influence the overall performance of MOx–polymer hybrid nanocomposite ReRAMs and their performances are highlighted. Additionally, the recent progress of multifunctional optoelectronic MOx–polymer hybrid composites‐based ReRAMs are explored as artificial synapses for neural networks to emulate neuromorphic visualization and memorize information. Finally, the challenges, limitations, and future outlooks of the fabrication of MOx–polymer hybrid composite ReRAMs over the conventional von Neumann computing systems are discussed. Advancements in artificial intelligence are driving the need for highly parallel and energy‐efficient computing analogous to the human brain. In light of this, recent progresses, challenges, limitations, and future outlooks of multifunctional optoelectronic metal oxide–polymer hybrid composites‐based resistive memory devices are explored, particularly for their perspectives toward artificial synapses for neural networks that can emulate neuromorphic visualization and memorize information.
Journal Article
Garlic in health and disease
by
Ola, R. P.
,
Vaiphei, K.
,
Sharma, Sanjeev K.
in
Animal models
,
Animals
,
Anti-Bacterial Agents - pharmacology
2011
The present article reviews the historical and popular uses of garlic, its antioxidant, haematological, antimicrobial, hepatoprotective and antineoplastic properties and its potential toxicity (from sulfoxide). Garlic has been suggested to affect several cardiovascular risk factors. It has also been shown that garlic and its organic allyl sulfur components are effective inhibitors of the cancer process. Since garlic and its constituents can suppress carcinogen formation, bioactivation and tumour proliferation, it is imperative that biomarkers be established to identify which individuals might benefit most. Garlic powder, aged garlic and garlic oil have demonstrated antiplatelet and anticoagulant effects by interfering with cyclo-oxygenase-mediated thromboxane synthesis. Garlic has also been found to have synergistic effects against Helicobacter pylori with a proton pump inhibitor. The active compound allicin may affect atherosclerosis not only by acting as an antioxidant, but also by other mechanisms, such as lipoprotein modification and inhibition of LDL uptake and degradation by macrophages. Freshly prepared garlic homogenate protects against isoniazid+rifampicin-induced liver injury in experimental animal models. Several mechanisms are likely to account for this protection.
Journal Article
Non-Trivial Dynamics in the FizHugh–Rinzel Model and Non-Homogeneous Oscillatory-Excitable Reaction-Diffusions Systems
2023
This article focuses on the qualitative analysis of complex dynamics arising in a few mathematical models in neuroscience context. We first discuss the dynamics arising in the three-dimensional FitzHugh–Rinzel (FHR) model and then illustrate those arising in a class of non-homogeneous FitzHugh–Nagumo (Nh-FHN) reaction-diffusion systems. FHR and Nh-FHN models can be used to generate relevant complex dynamics and wave-propagation phenomena in neuroscience context. Such complex dynamics include canards, mixed-mode oscillations (MMOs), Hopf-bifurcations and their spatially extended counterpart. Our article highlights original methods to characterize these complex dynamics and how they emerge in ordinary differential equations and spatially extended models.
Journal Article
The role of the potato (Solanum tuberosum) CCD8 gene in stolon and tuber development
by
Raymond Campbell
,
Peter M. Bramley
,
Alison G. Roberts
in
acts downstream
,
apical-dominance
,
auxin transport
2013
Strigolactones (SLs) are a class of phytohormones controlling shoot branching. In potato (Solanum tuberosum), tubers develop from underground stolons, diageotropic stems which originate from basal stem nodes. As the degree of stolon branching influences the number and size distribution of tubers, it was considered timely to investigate the effects of SL production on potato development and tuber life cycle.
Transgenic potato plants were generated in which the CAROTENOID CLEAVAGE DIOXYGENASE8 (CCD8) gene, key in the SL biosynthetic pathway, was silenced by RNA interference (RNAi).
The resulting CCD8-RNAi potato plants showed significantly more lateral and main branches than control plants, reduced stolon formation, together with a dwarfing phenotype and a lack of flowering in the most severely affected lines. New tubers were formed from sessile buds of the mother tubers. The apical buds of newly formed transgenic tubers grew out as shoots when exposed to light. In addition, we found that CCD8 transcript levels were rapidly downregulated in tuber buds by the application of sprout-inducing treatments.
These results suggest that SLs could have an effect, solely or in combination with other phytohormones, in the morphology of potato plants and also in controlling stolon development and maintaining tuber dormancy.
Journal Article
Bacterial Compatibility/Toxicity of Biogenic Silica (b-SiO2) Nanoparticles Synthesized from Biomass Rice Husk Ash
by
Kim, Deuk Young
,
Singh, Beer Pal
,
Sharma, Ashish R.
in
anti-bacterial
,
Antibacterial activity
,
Ashes
2019
Biogenic silica (b-SiO2) nanopowders from rice husk ash (RHA) were prepared by chemical method and their bacterial compatibility/toxicity was analyzed. The X-ray diffractometry (XRD) patterns of the b-SiO2 nanopowders indicated an amorphous feature due to the absence of any sharp peaks. Micrographs of the b-SiO2 revealed that sticky RHA synthesized SiO2 nanopowder (S1) had clustered spherical nanoparticles (70 nm diameter), while b-SiO2 nanopowder synthesized from red RHA (S2) and b-SiO2 nanopowder synthesized from brown RHA (S3) were purely spherical (20 nm and 10 nm diameter, respectively). Compared to the S1 (11.36 m2g−1) and S2 (234.93 m2g−1) nanopowders, the S3 nanopowders showed the highest surface area (280.16 m2g−1) due to the small particle size and high porosity. The core level of the X-ray photoelectron spectroscopy (XPS) spectra showed that Si was constituted by two components, Si 2p (102.2 eV) and Si 2s (153.8 eV), while Oxygen 1s was observed at 531.8 eV, confirming the formation of SiO2. The anti-bacterial activity of the b-SiO2 nanopowders was investigated using both gram-positive (Escherichia coli) and gram-negative (Staphylococcus aureus) microorganisms. Compared to S2 and S3 silica nanopowders, S1 demonstrated enhanced antibacterial activity. This study signifies the medical, biomedical, clinical, and biological importance and application of RHA-mediated synthesized b-SiO2.
Journal Article
Thickness Dependent Structural and Dielectric Properties of Calcium Copper Titanate Thin Films Produced by Spin-Coating Method for Microelectronic Devices
by
Sankar, S.
,
Marikani, A.
,
Sharma, Sanjeev K.
in
Activation energy
,
Annealing
,
Calcium titanate
2017
Calcium copper titanate (CaCu
3
Ti
4
O
12
, CCTO) thin films have been deposited on platinized silicon [(111)Pt/Ti/SiO
2
/Si] substrate through a sol–gel spin coating technique and annealed at 600–900°C with a variation of 100°C per sample for 3 h. The activation energy for crystalline growth, as well as optimal annealing temperature (900°C) of the CCTO crystallites was studied by x-ray diffraction analysis (XRD). Thickness dependent structural, morphological, and optical properties of CCTO thin films were observed. The field emission scanning electron microscopy (FE-SEM) verified that the CCTO thin films are uniform, fully covered, densely packed, and the particle size was found to be increased with film thickness. Meanwhile, quantitative analysis of dielectric properties (interfacial capacitance, dead layers, and bulk dielectric constant) of CCTO thin film with metal–insulator–metal (M–I–M) structures has been investigated systematically using a series capacitor model. Room temperature dielectric properties of all the samples exhibit dispersion at low frequencies, which can be explained based on Maxwell–Wagner two-layer models and Koop’s theory. It was found that the 483 nm thick CCTO film represents a high dielectric constant (
ε
r
= 3334), low loss (tan
δ
= 3.54), capacitance (
C
= 4951 nF), which might satisfy the requirements of embedded capacitor.
Journal Article