Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
29 result(s) for "Shaw, Shih-Lung"
Sort by:
Time geography in a hybrid physical–virtual world
Time geography was conceptualized in the 1960s when the technology was very different from what we have today. Conventional time-geographic concepts therefore were developed with a focus on human activities and interactions in physical space. We now live in a smart, connected, and dynamic world with human activities and interactions increasingly taking place in virtual space enabled by modern information and communications technology. Coupled with recent advances in sensing and mobile technologies, it is now feasible to collect human dynamics data in both physical and virtual spaces with unprecedented spatial and temporal details in the so-called Big Data era. The Big Data era brings both opportunities and challenges to time geography. While the unprecedented data collected in the Big Data era can serve as useful data sources to time-geographic research, we also notice that some classical concepts in time geography are insufficient to properly handle human dynamics in today’s hybrid physical–virtual world in many cases. This paper first discusses the evolving human dynamics enabled by technological advances to illustrate different types of hybrid physical–virtual space performed through internet applications, digital twins, and augmented reality/virtual reality/metaverse. We then review the classical time-geographic concepts of constraints, space–time path, space–time prism, bundle, project/situation, and diorama in a hybrid physical–virtual world to discuss potential extensions of some classical time-geographic concepts to bolster human dynamics research in today’s hybrid physical–virtual world.
Understanding aggregate human mobility patterns using passive mobile phone location data: a home-based approach
Advancements of information, communication and location-aware technologies have made collections of various passively generated datasets possible. These datasets provide new opportunities to understand human mobility patterns at a low cost and large scale. This study presents a home-based approach to understanding human mobility patterns based on a large mobile phone location dataset from Shenzhen, China. First, we estimate each individual’s “home” anchor point, and a modified standard distance ( S D ′ ) is proposed to measure the spread of each individual’s activity space centered at this “home” anchor point. We then derive aggregate mobility patterns at mobile phone tower level to describe the distance distribution of S D ′ for people who share the same “home” anchor point. A hierarchical clustering algorithm is performed and the spatial distributions of the derived clusters are analyzed to highlight areas with similar aggregate human mobility patterns. The results suggest that 43 % of the population sample travelled within a short distance ( S D ′ ≤ 1 km ) during the 13-day study period while 23.9 % of them were associated with a large activity space ( S D ′ ≥ 5 km ). The geographical differences of people’s mobility patterns in Shenzhen are evident. Areas with a large proportion of people who have a small activity space mainly locate in the northern part of Shenzhen such as Baoan and Longgang districts. In the southern part where the economy is highly developed, the percentage of people with a larger activity space is higher in general. The findings could offer useful implications on policy and decision making. The proposed approach can also be used in other studies involving similar spatiotemporal datasets for travel behavior and policy analysis.
Assessing Trauma Center Accessibility for Healthcare Equity Using an Anti-Covering Approach
Motor vehicle accidents are one of the most prevalent causes of traumatic injury in patients needing transport to a trauma center. Arrival at a trauma center within an hour of the accident increases a patient’s chances of survival and recovery. However, not all vehicle accidents in Tennessee are accessible to a trauma center within an hour by ground transportation. This study uses the anti-covering location problem (ACLP) to assess the current placement of trauma centers and explore optimal placements based on the population distribution and spatial pattern of motor vehicle accidents in 2015 through 2019 in Tennessee. The ACLP models seek to offer a method of exploring feasible scenarios for locating trauma centers that intend to provide accessibility to patients in underserved areas who suffer trauma as a result of vehicle accidents. The proposed ACLP approach also seeks to adjust the locations of trauma centers to reduce areas with excessive service coverage while improving coverage for less accessible areas of demand. In this study, three models are prescribed for finding optimal locations for trauma centers: (a) TraCt: ACLP model with a geometric approach and weighted models of population, fatalities, and spatial fatality clusters of vehicle accidents; (b) TraCt-ESC: an extended ACLP model mitigating excessive service supply among trauma center candidates, while expanding services to less served areas for more beneficiaries using fewer facilities; and (c) TraCt-ESCr: another extended ACLP model exploring the optimal location of additional trauma centers.
Measuring segregation: an activity space approach
While the literature clearly acknowledges that individuals may experience different levels of segregation across their various socio-geographical spaces, most measures of segregation are intended to be used in the residential space. Using spatially aggregated data to evaluate segregation in the residential space has been the norm and thus individual’s segregation experiences in other socio-geographical spaces are often de-emphasized or ignored. This paper attempts to provide a more comprehensive approach in evaluating segregation beyond the residential space. The entire activity spaces of individuals are taken into account with individuals serving as the building blocks of the analysis. The measurement principle is based upon the exposure dimension of segregation. The proposed measure reflects the exposure of individuals of a referenced group in a neighborhood to the populations of other groups that are found within the activity spaces of individuals in the referenced group. Using the travel diary data collected from the tri-county area in southeast Florida and the imputed racial–ethnic data, this paper demonstrates how the proposed segregation measurement approach goes beyond just measuring population distribution patterns in the residential space and can provide a more comprehensive evaluation of segregation by considering various socio-geographical spaces.
An estimate of rural exodus in China using location-aware data
The rapidly developing economy and growing urbanization in China have created the largest rural-to-urban migration in human history. Thus, a comprehensive understanding of the pattern of rural flight and its prevalence and magnitude over the country is increasingly important for sociological and political concerns. Because of the limited availability of internal migration data, which was derived previously from the decennial population census and small-scale household survey, we could not obtain timely and consistent observations for rural depopulation dynamics across the whole country. In this study, we use aggregate location-aware data collected from mobile location requests in the largest Chinese social media platform during the period of the 2016 Chinese New Year to conduct a nationwide estimate of rural depopulation in China (in terms of the grid cell-level prevalence and the magnitude) based on the world's largest travel period. Our results suggest a widespread rural flight likely occurring in 60.2% (36.5%-81.0%, lower-upper estimate) of rural lands at the grid cell-level and covering ~1.55 (1.48-1.94) million villages and hamlets, most of China's rural settlement sites. Moreover, we find clear regional variations in the magnitude and spatial extent of the estimated rural depopulation. These variations are likely connected to regional differences in the size of the source population, largely because of the nationwide prevalence of rural flight in today's China. Our estimate can provide insights into related investigations of China's rural depopulation and the potential of increasingly available crowd-sourced data for demographic studies.
Human Dynamics Research in GIScience: challenges and opportunities
The Symposium on Human Dynamics Research, first organized at the 2015 AAG Meeting in Chicago, celebrated its 10th anniversary at the 2024 AAG Meeting in Honolulu, marking a decade of transformative advancements in the field. Over the past decade, the focus of human dynamics research has shifted from traditional spatial-temporal analyses to sophisticated modeling of human behavior in a hybrid physical-virtual world. This evolving field now examines the intricate interdependencies between physical and digital environments, addressing critical issues such as urban resilience, public health, social equity, and community sustainability. The symposium emphasized the growing importance of interdisciplinary collaboration, advanced data-driven analytical platforms, and innovative theoretical frameworks to better understand human interactions across these spaces. As human dynamics continue to shape global urban systems, these advancements are pivotal for future research and real-world problem-solving, offering novel insights into the interconnectedness of mobility, technology, and societal well-being in a rapidly changing world.
Re-Identification Risk versus Data Utility for Aggregated Mobility Research Using Mobile Phone Location Data
Mobile phone location data is a newly emerging data source of great potential to support human mobility research. However, recent studies have indicated that many users can be easily re-identified based on their unique activity patterns. Privacy protection procedures will usually change the original data and cause a loss of data utility for analysis purposes. Therefore, the need for detailed data for activity analysis while avoiding potential privacy risks presents a challenge. The aim of this study is to reveal the re-identification risks from a Chinese city's mobile users and to examine the quantitative relationship between re-identification risk and data utility for an aggregated mobility analysis. The first step is to apply two reported attack models, the top N locations and the spatio-temporal points, to evaluate the re-identification risks in Shenzhen City, a metropolis in China. A spatial generalization approach to protecting privacy is then proposed and implemented, and spatially aggregated analysis is used to assess the loss of data utility after privacy protection. The results demonstrate that the re-identification risks in Shenzhen City are clearly different from those in regions reported in Western countries, which prove the spatial heterogeneity of re-identification risks in mobile phone location data. A uniform mathematical relationship has also been found between re-identification risk (x) and data (y) utility for both attack models: y = -axb+c, (a, b, c>0; 0
Understanding Spatiotemporal Patterns of Human Convergence and Divergence Using Mobile Phone Location Data
Investigating human mobility patterns can help researchers and agencies understand the driving forces of human movement, with potential benefits for urban planning and traffic management. Recent advances in location-aware technologies have provided many new data sources (e.g., mobile phone and social media data) for studying human space-time behavioral regularity. Although existing studies have utilized these new datasets to characterize human mobility patterns from various aspects, such as predicting human mobility and monitoring urban dynamics, few studies have focused on human convergence and divergence patterns within a city. This study aims to explore human spatial convergence and divergence and their evolutions over time using large-scale mobile phone location data. Using a dataset from Shenzhen, China, we developed a method to identify spatiotemporal patterns of human convergence and divergence. Eight distinct patterns were extracted, and the spatial distributions of these patterns are discussed in the context of urban functional regions. Thus, this study investigates urban human convergence and divergence patterns and their relationships with the urban functional environment, which is helpful for urban policy development, urban planning and traffic management.
An Invisible Salient Landmark Approach to Locating Pedestrians for Predesigned Business Card Route of Pedestrian Navigation
Visual landmarks are important navigational aids for research into and design of applications for last mile pedestrian navigation, e.g., business card route of pedestrian navigation. The business card route is a route between a fixed origin (e.g., campus entrance) to a fixed destination (e.g., office). The changing characteristics and combinations of various sensors’ data in smartphones or navigation devices can be viewed as invisible salient landmarks for business card route of pedestrian navigation. However, the advantages of these invisible landmarks have not been fully utilized, despite the prevalence of GPS and digital maps. This paper presents an improvement to the Dempster–Shafer theory of evidence to find invisible landmarks along predesigned pedestrian routes, which can guide pedestrians by locating them without using digital maps. This approach is suitable for use as a “business card” route for newcomers to find their last mile destinations smoothly by following precollected sensor data along a target route. Experiments in real pedestrian navigation environments show that our proposed approach can sense the location of pedestrians automatically, both indoors and outdoors, and has smaller positioning errors than purely GPS and Wi-Fi positioning approaches in the study area. Consequently, the proposed methodology is appropriate to guide pedestrians to unfamiliar destinations, such as a room in a building or an exit from a park, with little dependency on geographical information.
Another Tale of Two Cities: Understanding Human Activity Space Using Actively Tracked Cellphone Location Data
Activity space is an important concept in geography. Recent advancements of location-aware technologies have generated many useful spatiotemporal data sets for studying human activity space for large populations. In this article, we use two actively tracked cellphone location data sets that cover a weekday to characterize people's use of space in Shanghai and Shenzhen, China. We introduce three mobility indicators (daily activity range, number of activity anchor points, and frequency of movements) to represent the major determinants of individual activity space. By applying association rules in data mining, we analyze how these indicators of an individual's activity space can be combined with each other to gain insights of mobility patterns in these two cities. We further examine spatiotemporal variations of aggregate mobility patterns in these two cities. Our results reveal some distinctive characteristics of human activity space in these two cities: (1) A high percentage of people in Shenzhen have a relatively short daily activity range, whereas people in Shanghai exhibit a variety of daily activity ranges; (2) people with more than one activity anchor point tend to travel further but less frequently in Shanghai than in Shenzhen; (3) Shenzhen shows a significant north-south contrast of activity space that reflects its urban structure; and (4) travel distance in both cities is shorter around noon than in regular work hours, and a large percentage of movements around noon are associated with individual home locations. This study indicates the benefits of analyzing actively tracked cellphone location data for gaining insights of human activity space in different cities.