Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
138 result(s) for "Shea-Brown, Eric"
Sort by:
Modeling functional cell types in spike train data
A major goal of computational neuroscience is to build accurate models of the activity of neurons that can be used to interpret their function in circuits. Here, we explore using functional cell types to refine single-cell models by grouping them into functionally relevant classes. Formally, we define a hierarchical generative model for cell types, single-cell parameters, and neural responses, and then derive an expectation-maximization algorithm with variational inference that maximizes the likelihood of the neural recordings. We apply this “simultaneous” method to estimate cell types and fit single-cell models from simulated data, and find that it accurately recovers the ground truth parameters. We then apply our approach to in vitro neural recordings from neurons in mouse primary visual cortex, and find that it yields improved prediction of single-cell activity. We demonstrate that the discovered cell-type clusters are well separated and generalizable, and thus amenable to interpretation. We then compare discovered cluster memberships with locational, morphological, and transcriptomic data. Our findings reveal the potential to improve models of neural responses by explicitly allowing for shared functional properties across neurons.
MouseNet: A biologically constrained convolutional neural network model for the mouse visual cortex
Convolutional neural networks trained on object recognition derive inspiration from the neural architecture of the visual system in mammals, and have been used as models of the feedforward computation performed in the primate ventral stream. In contrast to the deep hierarchical organization of primates, the visual system of the mouse has a shallower arrangement. Since mice and primates are both capable of visually guided behavior, this raises questions about the role of architecture in neural computation. In this work, we introduce a novel framework for building a biologically constrained convolutional neural network model of the mouse visual cortex. The architecture and structural parameters of the network are derived from experimental measurements, specifically the 100-micrometer resolution interareal connectome, the estimates of numbers of neurons in each area and cortical layer, and the statistics of connections between cortical layers. This network is constructed to support detailed task-optimized models of mouse visual cortex, with neural populations that can be compared to specific corresponding populations in the mouse brain. Using a well-studied image classification task as our working example, we demonstrate the computational capability of this mouse-sized network. Given its relatively small size, MouseNet achieves roughly 2/3rds the performance level on ImageNet as VGG16. In combination with the large scale Allen Brain Observatory Visual Coding dataset, we use representational similarity analysis to quantify the extent to which MouseNet recapitulates the neural representation in mouse visual cortex. Importantly, we provide evidence that optimizing for task performance does not improve similarity to the corresponding biological system beyond a certain point. We demonstrate that the distributions of some physiological quantities are closer to the observed distributions in the mouse brain after task training. We encourage the use of the MouseNet architecture by making the code freely available.
Predictive learning as a network mechanism for extracting low-dimensional latent space representations
Artificial neural networks have recently achieved many successes in solving sequential processing and planning tasks. Their success is often ascribed to the emergence of the task’s low-dimensional latent structure in the network activity – i.e., in the learned neural representations. Here, we investigate the hypothesis that a means for generating representations with easily accessed low-dimensional latent structure, possibly reflecting an underlying semantic organization, is through learning to predict observations about the world. Specifically, we ask whether and when network mechanisms for sensory prediction coincide with those for extracting the underlying latent variables. Using a recurrent neural network model trained to predict a sequence of observations we show that network dynamics exhibit low-dimensional but nonlinearly transformed representations of sensory inputs that map the latent structure of the sensory environment. We quantify these results using nonlinear measures of intrinsic dimensionality and linear decodability of latent variables, and provide mathematical arguments for why such useful predictive representations emerge. We focus throughout on how our results can aid the analysis and interpretation of experimental data. Neural networks trained using predictive models generate representations that recover the underlying low-dimensional latent structure in the data. Here, the authors demonstrate that a network trained on a spatial navigation task generates place-related neural activations similar to those observed in the hippocampus and show that these are related to the latent structure.
Dimensionality in recurrent spiking networks: Global trends in activity and local origins in connectivity
The dimensionality of a network's collective activity is of increasing interest in neuroscience. This is because dimensionality provides a compact measure of how coordinated network-wide activity is, in terms of the number of modes (or degrees of freedom) that it can independently explore. A low number of modes suggests a compressed low dimensional neural code and reveals interpretable dynamics [1], while findings of high dimension may suggest flexible computations [2, 3]. Here, we address the fundamental question of how dimensionality is related to connectivity, in both autonomous and stimulus-driven networks. Working with a simple spiking network model, we derive three main findings. First, the dimensionality of global activity patterns can be strongly, and systematically, regulated by local connectivity structures. Second, the dimensionality is a better indicator than average correlations in determining how constrained neural activity is. Third, stimulus evoked neural activity interacts systematically with neural connectivity patterns, leading to network responses of either greater or lesser dimensionality than the stimulus.
Nonlinear convergence boosts information coding in circuits with parallel outputs
Neural circuits are structured with layers of converging and diverging connectivity and selectivity-inducing nonlinearities at neurons and synapses. These components have the potential to hamper an accurate encoding of the circuit inputs. Past computational studies have optimized the nonlinearities of single neurons, or connection weights in networks, to maximize encoded information, but have not grappled with the simultaneous impact of convergent circuit structure and nonlinear response functions for efficient coding. Our approach is to compare model circuits with different combinations of convergence, divergence, and nonlinear neurons to discover how interactions between these components affect coding efficiency. We find that a convergent circuit with divergent parallel pathways can encode more information with nonlinear subunits than with linear subunits, despite the compressive loss induced by the convergence and the nonlinearities when considered separately.
Impact of Network Structure and Cellular Response on Spike Time Correlations
Novel experimental techniques reveal the simultaneous activity of larger and larger numbers of neurons. As a result there is increasing interest in the structure of cooperative--or correlated--activity in neural populations, and in the possible impact of such correlations on the neural code. A fundamental theoretical challenge is to understand how the architecture of network connectivity along with the dynamical properties of single cells shape the magnitude and timescale of correlations. We provide a general approach to this problem by extending prior techniques based on linear response theory. We consider networks of general integrate-and-fire cells with arbitrary architecture, and provide explicit expressions for the approximate cross-correlation between constituent cells. These correlations depend strongly on the operating point (input mean and variance) of the neurons, even when connectivity is fixed. Moreover, the approximations admit an expansion in powers of the matrices that describe the network architecture. This expansion can be readily interpreted in terms of paths between different cells. We apply our results to large excitatory-inhibitory networks, and demonstrate first how precise balance--or lack thereof--between the strengths and timescales of excitatory and inhibitory synapses is reflected in the overall correlation structure of the network. We then derive explicit expressions for the average correlation structure in randomly connected networks. These expressions help to identify the important factors that shape coordinated neural activity in such networks.
The What and Where of Adding Channel Noise to the Hodgkin-Huxley Equations
Conductance-based equations for electrically active cells form one of the most widely studied mathematical frameworks in computational biology. This framework, as expressed through a set of differential equations by Hodgkin and Huxley, synthesizes the impact of ionic currents on a cell's voltage--and the highly nonlinear impact of that voltage back on the currents themselves--into the rapid push and pull of the action potential. Later studies confirmed that these cellular dynamics are orchestrated by individual ion channels, whose conformational changes regulate the conductance of each ionic current. Thus, kinetic equations familiar from physical chemistry are the natural setting for describing conductances; for small-to-moderate numbers of channels, these will predict fluctuations in conductances and stochasticity in the resulting action potentials. At first glance, the kinetic equations provide a far more complex (and higher-dimensional) description than the original Hodgkin-Huxley equations or their counterparts. This has prompted more than a decade of efforts to capture channel fluctuations with noise terms added to the equations of Hodgkin-Huxley type. Many of these approaches, while intuitively appealing, produce quantitative errors when compared to kinetic equations; others, as only very recently demonstrated, are both accurate and relatively simple. We review what works, what doesn't, and why, seeking to build a bridge to well-established results for the deterministic equations of Hodgkin-Huxley type as well as to more modern models of ion channel dynamics. As such, we hope that this review will speed emerging studies of how channel noise modulates electrophysiological dynamics and function. We supply user-friendly MATLAB simulation code of these stochastic versions of the Hodgkin-Huxley equations on the ModelDB website (accession number 138950) and http://www.amath.washington.edu/~etsb/tutorials.html.
The Sign Rule and Beyond: Boundary Effects, Flexibility, and Noise Correlations in Neural Population Codes
Over repeat presentations of the same stimulus, sensory neurons show variable responses. This \"noise\" is typically correlated between pairs of cells, and a question with rich history in neuroscience is how these noise correlations impact the population's ability to encode the stimulus. Here, we consider a very general setting for population coding, investigating how information varies as a function of noise correlations, with all other aspects of the problem - neural tuning curves, etc. - held fixed. This work yields unifying insights into the role of noise correlations. These are summarized in the form of theorems, and illustrated with numerical examples involving neurons with diverse tuning curves. Our main contributions are as follows. (1) We generalize previous results to prove a sign rule (SR) - if noise correlations between pairs of neurons have opposite signs vs. their signal correlations, then coding performance will improve compared to the independent case. This holds for three different metrics of coding performance, and for arbitrary tuning curves and levels of heterogeneity. This generality is true for our other results as well. (2) As also pointed out in the literature, the SR does not provide a necessary condition for good coding. We show that a diverse set of correlation structures can improve coding. Many of these violate the SR, as do experimentally observed correlations. There is structure to this diversity: we prove that the optimal correlation structures must lie on boundaries of the possible set of noise correlations. (3) We provide a novel set of necessary and sufficient conditions, under which the coding performance (in the presence of noise) will be as good as it would be if there were no noise present at all.
Linking structure and activity in nonlinear spiking networks
Recent experimental advances are producing an avalanche of data on both neural connectivity and neural activity. To take full advantage of these two emerging datasets we need a framework that links them, revealing how collective neural activity arises from the structure of neural connectivity and intrinsic neural dynamics. This problem of structure-driven activity has drawn major interest in computational neuroscience. Existing methods for relating activity and architecture in spiking networks rely on linearizing activity around a central operating point and thus fail to capture the nonlinear responses of individual neurons that are the hallmark of neural information processing. Here, we overcome this limitation and present a new relationship between connectivity and activity in networks of nonlinear spiking neurons by developing a diagrammatic fluctuation expansion based on statistical field theory. We explicitly show how recurrent network structure produces pairwise and higher-order correlated activity, and how nonlinearities impact the networks' spiking activity. Our findings open new avenues to investigating how single-neuron nonlinearities-including those of different cell types-combine with connectivity to shape population activity and function.
Robust information propagation through noisy neural circuits
Sensory neurons give highly variable responses to stimulation, which can limit the amount of stimulus information available to downstream circuits. Much work has investigated the factors that affect the amount of information encoded in these population responses, leading to insights about the role of covariability among neurons, tuning curve shape, etc. However, the informativeness of neural responses is not the only relevant feature of population codes; of potentially equal importance is how robustly that information propagates to downstream structures. For instance, to quantify the retina's performance, one must consider not only the informativeness of the optic nerve responses, but also the amount of information that survives the spike-generating nonlinearity and noise corruption in the next stage of processing, the lateral geniculate nucleus. Our study identifies the set of covariance structures for the upstream cells that optimize the ability of information to propagate through noisy, nonlinear circuits. Within this optimal family are covariances with \"differential correlations\", which are known to reduce the information encoded in neural population activities. Thus, covariance structures that maximize information in neural population codes, and those that maximize the ability of this information to propagate, can be very different. Moreover, redundancy is neither necessary nor sufficient to make population codes robust against corruption by noise: redundant codes can be very fragile, and synergistic codes can-in some cases-optimize robustness against noise.