Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
20 result(s) for "Shen, Kunhong"
Sort by:
Nuclear spin polarization and control in hexagonal boron nitride
Electron spins in van der Waals materials are playing a crucial role in recent advances in condensed-matter physics and spintronics. However, nuclear spins in van der Waals materials remain an unexplored quantum resource. Here we report optical polarization and coherent control of nuclear spins in a van der Waals material at room temperature. We use negatively charged boron vacancy ( V B − ) spin defects in hexagonal boron nitride to polarize nearby nitrogen nuclear spins. We observe the Rabi frequency of nuclear spins at the excited-state level anti-crossing of V B − defects to be 350 times larger than that of an isolated nucleus, and demonstrate fast coherent control of nuclear spins. Further, we detect strong electron-mediated nuclear–nuclear spin coupling that is five orders of magnitude larger than the direct nuclear-spin dipolar coupling, enabling multi-qubit operations. Our work opens new avenues for the manipulation of nuclear spins in van der Waals materials for quantum information science and technology. Unlike electron spins, nuclear spins in van der Waals materials remain a largely untapped quantum resource. Here we report the fast coherent control of nuclear spins and strong electron-mediated nuclear–nuclear spin coupling in hexagonal boron nitride.
Observation and control of Casimir effects in a sphere-plate-sphere system
A remarkable prediction of quantum field theory is that there are quantum electromagnetic fluctuations (virtual photons) everywhere, which leads to the intriguing Casimir effect. While the Casimir force between two objects has been studied extensively for several decades, the Casimir force between three objects has not been measured yet. Here, we report the experimental demonstration of an object under the Casimir force exerted by two other objects simultaneously. Our Casimir system consists of a micrometer-thick cantilever placed in between two microspheres, forming a unique sphere-plate-sphere geometry. We also propose and demonstrate a three-terminal switchable architecture exploiting opto-mechanical Casimir interactions that can lay the foundations of a Casimir transistor. Beyond the paradigm of Casimir forces between two objects in different geometries, our Casimir transistor represents an important development for controlling three-body virtual photon interactions and will have potential applications in sensing and information processing. Experimental studies of the Casimir effect have involved only interactions between two bodies so far. Here, the authors observe a micrometer-thick cantilever under the Casimir force exerted by microspheres from two sides simultaneously.
Quantum control and Berry phase of electron spins in rotating levitated diamonds in high vacuum
Levitated diamond particles in high vacuum with internal spin qubits have been proposed for exploring macroscopic quantum mechanics, quantum gravity, and precision measurements. The coupling between spins and particle rotation can be utilized to study quantum geometric phase, create gyroscopes and rotational matter-wave interferometers. However, previous efforts in levitated diamonds struggled with vacuum level or spin state readouts. To address these gaps, we fabricate an integrated surface ion trap with multiple stabilization electrodes. This facilitates on-chip levitation and, for the first time, optically detected magnetic resonance measurements of a nanodiamond levitated in high vacuum. The internal temperature of our levitated nanodiamond remains moderate at pressures below 10 −5 Torr. We have driven a nanodiamond to rotate up to 20 MHz (1.2 × 10 9 rpm), surpassing typical nitrogen-vacancy (NV) center electron spin dephasing rates. Using these NV spins, we observe the effect of the Berry phase arising from particle rotation. In addition, we demonstrate quantum control of spins in a rotating nanodiamond. These results mark an important development in interfacing mechanical rotation with spin qubits, expanding our capacity to study quantum phenomena. Levitated nanodiamonds containing NV centers promise applications in quantum technologies, but they require experiments in high vacuum. Here the authors report on-chip levitation of nanodiamonds in high vacuum using a surface ion trap, showing spin read-out and fast rotation above NV center spin dephasing time.
Nanotube spin defects for omnidirectional magnetic field sensing
Optically addressable spin defects in three-dimensional (3D) crystals and two-dimensional (2D) van der Waals (vdW) materials are revolutionizing nanoscale quantum sensing. Spin defects in one-dimensional (1D) vdW nanotubes will provide unique opportunities due to their small sizes in two dimensions and absence of dangling bonds on side walls. However, optically detected magnetic resonance of localized spin defects in a nanotube has not been observed. Here, we report the observation of single spin color centers in boron nitride nanotubes (BNNTs) at room temperature. Our findings suggest that these BNNT spin defects possess a spin S  = 1/2 ground state without an intrinsic quantization axis, leading to orientation-independent magnetic field sensing. We harness this unique feature to observe anisotropic magnetization of a 2D magnet in magnetic fields along orthogonal directions, a challenge for conventional spin S  = 1 defects such as diamond nitrogen-vacancy centers. Additionally, we develop a method to deterministically transfer a BNNT onto a cantilever and use it to demonstrate scanning probe magnetometry. Further refinement of our approach will enable atomic scale quantum sensing of magnetic fields in any direction. Optically addressable spin defects, such as the NV centre in diamond, have enabled the nanoscale measurement of external stimuli. Here, Gao, Vaidya and coauthors observe a single spin colour centres in boron nitride nanotubes, which, due to their spin S = 1/2 ground state, allow for omnidirectional magnetic field sensing. ’
Quantum control and Berry phase of electron spins in rotating levitated diamonds in high vacuum
Levitated diamond particles in high vacuum with internal spin qubits have been proposed for exploring macroscopic quantum mechanics, quantum gravity, and precision measurements. The coupling between spins and particle rotation can be utilized to study quantum geometric phase, create gyroscopes and rotational matter-wave interferometers. However, previous efforts in levitated diamonds struggled with vacuum level or spin state readouts. To address these gaps, we fabricate an integrated surface ion trap with multiple stabilization electrodes. This facilitates on-chip levitation and, for the first time, optically detected magnetic resonance measurements of a nanodiamond levitated in high vacuum. The internal temperature of our levitated nanodiamond remains moderate below \\(10^{-5}\\) Torr. Impressively, we have driven a nanodiamond to rotate up to 20 MHz (\\(1.2 \\times 10^{9}\\) rpm), surpassing typical nitrogen-vacancy (NV) center electron spin dephasing rates. Using these NV spins, we observe the effect of the Berry phase arising from particle rotation. In addition, we demonstrate quantum control of spins in a rotating nanodiamond. These results mark an important development in interfacing mechanical rotation with spin qubits, expanding our capacity to study quantum phenomena.
Quantum sensing of paramagnetic spins in liquids with spin qubits in hexagonal boron nitride
Paramagnetic ions and radicals play essential roles in biology and medicine, but detecting these species requires a highly sensitive and ambient-operable sensor. Optically addressable spin color centers in 3D semiconductors have been used for detecting paramagnetic spins as they are sensitive to the spin magnetic noise. However, the distance between spin color centers and target spins is limited due to the difficulty of creating high-quality spin defects near the surface of 3D materials. Here, we show that spin qubits in hexagonal boron nitride (hBN), a layered van der Waals (vdW) material, can serve as a promising sensor for nanoscale detection of paramagnetic spins in liquids. We first create shallow spin defects in close proximity to the hBN surface, which sustain high-contrast optically detected magnetic resonance (ODMR) in liquids. Then we demonstrate sensing spin noise of paramagnetic ions in water based on spin relaxation measurements. Finally, we show that paramagnetic ions can reduce the contrast of spin-dependent fluorescence, enabling efficient detection by continuous wave ODMR. Our results demonstrate the potential of ultrathin hBN quantum sensors for chemical and biological applications.
Towards real-world applications of levitated optomechanics
Levitated optomechanics, a rapidly expanding field that employs light to monitor and manipulate the mechanical motion of levitated objects, is increasingly relevant across physics, engineering, and other fields. This technique, which involves levitating micro- and nano-scale objects in a vacuum where they exhibit high-quality motion, provides an essential platform for precision measurements. Noted for their ultra-high sensitivity, levitated particles hold potential for a wide range of real-world applications. This perspective article briefly introduces the principle of optical levitation and the dynamics of levitated particles. It then reviews the emerging applications of levitated particles in ultrasensitive force and torque measurements, acceleration and rotation sensing, electric and magnetic field detection, scanning probe microscopy, localized vacuum pressure gauging, acoustic transduction, and chemical and biological sensing. Moreover, we discuss the present challenges and explore opportunities to minimize and integrate levitation systems for broader applications. We also briefly review optomechanics with ion traps and magnetic traps which can levitate particles in high vacuum without laser heating.
Near-field GHz rotation and sensing with an optically levitated nanodumbbell
A levitated non-spherical nanoparticle in a vacuum is ideal for studying quantum rotations and is an extremely sensitive torque and force detector. It has been proposed to probe fundamental particle-surface interactions such as the Casimir torque and the rotational quantum vacuum friction, which require it to be driven to rotate near a surface at sub-micrometer separations. Here, we optically levitate a silica nanodumbbell in a vacuum at about 430 nm away from a sapphire surface and drive it to rotate at GHz frequencies. The relative linear speed between the tip of the nanodumbbell and the surface reaches 1.4 km/s at a sub-micrometer separation. The rotating nanodumbbell near the surface demonstrates a torque sensitivity of \\((5.0 \\pm 1.1) \\times 10^{-26} {\\rm NmHz}^{-1/2}\\) at room temperature. Moreover, we levitate a nanodumbbell near a gold nanograting and use it to probe the near-field intensity distribution beyond the optical diffraction limit. Our numerical simulation shows it is promising to detect the Casimir torque between a nanodumbbell and a nanograting.
Switching and amplifying three-body Casimir effects
The dynamics of three interacting objects has been investigated extensively in Newtonian gravitational physics (often termed the three-body problem), and is important for many quantum systems, including nuclei, Efimov states, and frustrated spin systems. However, the dynamics of three macroscopic objects interacting through quantum vacuum fluctuations (virtual photons) is still an unexplored frontier. Here, we report the first observation of Casimir interactions between three isolated macroscopic objects. We propose and demonstrate a three terminal switchable architecture exploiting opto-mechanical Casimir interactions that can lay the foundations of a Casimir transistor. Beyond the paradigm of Casimir forces between two objects in different geometries, our Casimir transistor represents an important development for control of three-body virtual photon interactions and will have potential applications in sensing and information processing with the Casimir effect.
On-chip optical levitation with a metalens in vacuum
Optical levitation of dielectric particles in vacuum is a powerful technique for precision measurements, testing fundamental physics, and quantum information science. Conventional optical tweezers require bulky optical components for trapping and detection. Here we design and fabricate an ultrathin dielectric metalens with a high numerical aperture of 0.88 at 1064 nm in vacuum. It consists of 500 nm-thick silicon nano-antennas, which are compatible with ultrahigh vacuum. We demonstrate optical levitation of nanoparticles in vacuum with a single metalens. The trapping frequency can be tuned by changing the laser power and polarization. We also transfer a levitated nanoparticle between two separated optical tweezers. Optical levitation with an ultrathin metalens in vacuum provides opportunities for a wide range of applications including on-chip sensing. Such metalenses will also be useful for trapping ultacold atoms and molecules.