Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
107 result(s) for "Shen, Yu-Chi"
Sort by:
TCF21+ mesenchymal cells contribute to testis somatic cell development, homeostasis, and regeneration in mice
Testicular development and function rely on interactions between somatic cells and the germline, but similar to other organs, regenerative capacity declines in aging and disease. Whether the adult testis maintains a reserve progenitor population remains uncertain. Here, we characterize a recently identified mouse testis interstitial population expressing the transcription factor Tcf21. We found that TCF21 lin cells are bipotential somatic progenitors present in fetal testis and ovary, maintain adult testis homeostasis during aging, and act as potential reserve somatic progenitors following injury. In vitro, TCF21 lin cells are multipotent mesenchymal progenitors which form multiple somatic lineages including Leydig and myoid cells. Additionally, TCF21 + cells resemble resident fibroblast populations reported in other organs having roles in tissue homeostasis, fibrosis, and regeneration. Our findings reveal that the testis, like other organs, maintains multipotent mesenchymal progenitors that can be potentially leveraged in development of future therapies for hypoandrogenism and/or infertility. Whether the adult testis harbours a somatic progenitor population is unknown. Here, the authors provide evidence that the testis interstitial cells expressing the transcription factor Tcf21 maintain adult testis homeostasis during aging, and act as potential reserve somatic progenitors following injury.
The Vibrio cholerae var regulon encodes a metallo-β-lactamase and an antibiotic efflux pump, which are regulated by VarR, a LysR-type transcription factor
The genome sequence of V. cholerae O1 Biovar Eltor strain N16961 has revealed a putative antibiotic resistance (var) regulon that is predicted to encode a transcriptional activator (VarR), which is divergently transcribed relative to the putative resistance genes for both a metallo-β-lactamase (VarG) and an antibiotic efflux-pump (VarABCDEF). We sought to test whether these genes could confer antibiotic resistance and are organised as a regulon under the control of VarR. VarG was overexpressed and purified and shown to have β-lactamase activity against penicillins, cephalosporins and carbapenems, having the highest activity against meropenem. The expression of VarABCDEF in the Escherichia coli (ΔacrAB) strain KAM3 conferred resistance to a range of drugs, but most significant resistance was to the macrolide spiramycin. A gel-shift analysis was used to determine if VarR bound to the promoter regions of the resistance genes. Consistent with the regulation of these resistance genes, VarR binds to three distinct intergenic regions, varRG, varGA and varBC located upstream and adjacent to varG, varA and varC, respectively. VarR can act as a repressor at the varRG promoter region; whilst this repression was relieved upon addition of β-lactams, these did not dissociate the VarR/varRG-DNA complex, indicating that the de-repression of varR by β-lactams is indirect. Considering that the genomic arrangement of VarR-VarG is strikingly similar to that of AmpR-AmpC system, it is possible that V. cholerae has evolved a system for resistance to the newer β-lactams that would prove more beneficial to the bacterium in light of current selective pressures.
Nonsteroidal sulfamate derivatives as new therapeutic approaches for Neurofibromatosis 2 (NF2)
Background Neurofibromatosis 1 and 2, although involving two different tumour suppressor genes (neurofibromin and merlin, respectively), are both cancer predisposition syndromes that disproportionately affect cells of neural crest origin. New therapeutic approaches for both NF1 and NF2 are badly needed. In promising previous work we demonstrated that two non-steroidal analogues of 2-methoxy-oestradiol (2ME2), STX3451(2-(3-bromo-4,5-dimethoxybenzyl)-7-methoxy-6-sulfamoyloxy-1,2,3,4-tetrahydroisoquinoline), and STX2895 (7-Ethyl-6-sulfamoyloxy-2-(3,4,5-trimethoxybenzyl)-1,2,3,4-tetrahydroisoquinoline) reduced tumour cell growth and induced apoptosis in malignant and benign human Neurofibromatosis 1 (NF1) tumour cells. In earlier NF1 mechanism of action studies we found that in addition to their effects on non-classical hormone-sensitive pathways, STX agents acted on the actin- and myosin-cytoskeleton, as well as PI3Kinase and MTOR signaling pathways. Tumour growth in NF2 cells is affected by different inhibitors from those affecting NF1 growth pathways: specifically, NF2 cells are affected by merlin-downstream pathway inhibitors. Because Merlin, the affected tumour suppressor gene in NF2, is also known to be involved in stabilizing membrane-cytoskeletal complexes, as well as in cell proliferation, and apoptosis, we looked for potentially common mechanisms of action in the agents’ effects on NF1 and NF2. We set out to determine whether STX agents could therefore also provide a prospective avenue for treatment of NF2. Methods STX3451 and STX2895 were tested in dose-dependent studies for their effects on growth parameters of malignant and benign NF2 human tumour cell lines in vitro. The mechanisms of action of STX3451 and STX2895 were also analysed. Results Although neither of the agents tested affected cell growth or apoptosis in the NF2 tumour cell lines tested through the same mechanisms by which they affect these parameters in NF1 tumour cell lines, both agents disrupted actin- and myosin-based cytoskeletal structures in NF2 cell lines, with subsequent effects on growth and cell death. Conclusions Both STX3451 and STX2895 provide new approaches for inducing cell death and lowering tumour burden in NF2 as well as in NF1, which both have limited treatment options.
Otx5 regulates genes that show circadian expression in the zebrafish pineal complex
The photoneuroendocrine system translates environmental light conditions into the circadian production of endocrine and neuroendocrine signals. Central to this process is the pineal organ, which has a conserved role in the cyclical synthesis and release of melatonin to influence sleep patterns and seasonal reproduction 1 . In lower vertebrates, the pineal organ contains photoreceptors whose activity entrains an endogenous circadian clock and regulates transcription in pinealocytes 1 . In mammals, pineal function is influenced by retinal photoreceptors that project to the suprachiasmatic nucleus—the site of the endogenous circadian clock. A multisynaptic pathway then relays information about circadian rhythmicity and photoperiod to the pineal organ 1 . The gene cone rod homeobox ( crx ), a member of the orthodenticle homeobox (otx) family, is thought to regulate pineal circadian activity. In the mouse, targeted inactivation of Crx causes a reduction in pineal gene expression and attenuated entrainment to light/dark cycles 2 . Here we show that crx and otx5 orthologs are expressed in both the pineal organ and the asymmetrically positioned parapineal of larval zebrafish. Circadian gene expression is unaffected by a reduction in Crx expression but is inhibited specifically by depletion of Otx5. Our results indicate that Otx5 rather than Crx regulates genes that show circadian expression in the zebrafish pineal complex.
Targeted NF1 cancer therapeutics with multiple modes of action: small molecule hormone-like agents resembling the natural anticancer metabolite, 2-methoxyoestradiol
Background: Both the number and size of tumours in NF1 patients increase in response to the rise in steroid hormones seen at puberty and during pregnancy. The size of tumours decreases after delivery, suggesting that hormone-targeting therapy might provide a viable new NF1 treatment approach. Our earlier studies demonstrated that human NF1 tumour cell lines either went through apoptosis or ceased growth in the presence of 2-methoxyoestradiol (2ME2), a naturally occurring anticancer metabolite of 17- β estradiol. Previous reports of treatment with sulfamoylated steroidal and non-steroidal derivatives of 2ME2 showed promising reductions in tumour burden in hormone-responsive cancers other than NF1. Here we present the first studies indicating that 2ME2 derivatives could also provide an avenue for treating NF1, for which few treatment options are available. Methods: STX3451, (2-(3-Bromo-4,5-dimethoxybenzyl)-7-methoxy-6-sulfamoyloxy-1,2,3,4-tetrahydroisoquinoline), a non-steroidal sulphamate analogue of 2ME2, was tested in dose-dependent studies of malignant and benign NF1 human tumour cell lines and cell lines with variable controlled neurofibromin expression. The mechanisms of action of STX3451 were also analysed. Results: We found that STX3451-induced apoptosis in human malignant peripheral nerve sheath tumour (MPNST) cell lines, even in the presence of elevated oestrogen and progesterone. It inhibits both PI3 kinase and mTOR signalling pathways. It disrupts actin- and microtubule-based cytoskeletal structures in cell lines derived from human MPNSTs and in cells derived from benign plexiform neurofibromas. STX3451 selectively kills MPNST-derived cells, but also halts growth of other tumour-derived NF1 cell lines. Conclusion: STX3451 provides a new approach for inducing cell death and lowering tumour burden in NF1 and other hormone-responsive cancers with limited treatment options.
The Vibrio cholerae var regulon encodes a metallo-beta-lactamase and an antibiotic efflux pump, which are regulated by VarR, a LysR-type transcription factor
The genome sequence of V. cholerae O1 Biovar Eltor strain N16961 has revealed a putative antibiotic resistance (var) regulon that is predicted to encode a transcriptional activator (VarR), which is divergently transcribed relative to the putative resistance genes for both a metallo-[beta]-lactamase (VarG) and an antibiotic efflux-pump (VarABCDEF). We sought to test whether these genes could confer antibiotic resistance and are organised as a regulon under the control of VarR. VarG was overexpressed and purified and shown to have [beta]-lactamase activity against penicillins, cephalosporins and carbapenems, having the highest activity against meropenem. The expression of VarABCDEF in the Escherichia coli ([DELTA]acrAB) strain KAM3 conferred resistance to a range of drugs, but most significant resistance was to the macrolide spiramycin. A gel-shift analysis was used to determine if VarR bound to the promoter regions of the resistance genes. Consistent with the regulation of these resistance genes, VarR binds to three distinct intergenic regions, varRG, varGA and varBC located upstream and adjacent to varG, varA and varC, respectively. VarR can act as a repressor at the varRG promoter region; whilst this repression was relieved upon addition of [beta]-lactams, these did not dissociate the VarR/varRG-DNA complex, indicating that the de-repression of varR by [beta]-lactams is indirect. Considering that the genomic arrangement of VarR-VarG is strikingly similar to that of AmpR-AmpC system, it is possible that V. cholerae has evolved a system for resistance to the newer [beta]-lactams that would prove more beneficial to the bacterium in light of current selective pressures.
Tcf21+ mesenchymal cells contribute to testis somatic cell development, homeostasis, and regeneration
Testicular development and function relies on interactions between somatic cells and the germline, but similar to other organs, regenerative capacity decline in aging and disease. Whether the adult testis maintains a reserve progenitor population with repair or regenerative capacity remains uncertain. Here, we characterized a recently identified mouse testis interstitial population expressing the transcription factor Tcf21. We found that Tcf21+ cells are bipotential somatic progenitors present in fetal testis and ovary, maintain adult testis homeostasis during aging, and act as reserve somatic progenitors following injury. In vitro, Tcf21+ cells are multipotent mesenchymal progenitors which form multiple somatic lineages including Leydig and myoid cells. Additionally, Tcf21+ cells resemble resident fibroblast populations reported in other organs having roles in tissue homeostasis, fibrosis, and regeneration. Our findings reveal that the testis, like other organs, maintains multipotent mesenchymal progenitors that can be leveraged in development of future therapies for hypoandrogenism and/or infertility. Competing Interest Statement The authors have declared no competing interest.
Cellular heterogeneity and dynamics of the human uterus in healthy premenopausal women
The human uterus is a complex and dynamic organ whose lining grows, remodels, and regenerates in every menstrual cycle or upon tissue damage. Here we applied single-cell RNA sequencing to profile more the 50,000 uterine cells from both the endometrium and myometrium of 5 healthy premenopausal individuals, and jointly analyzed the data with a previously published dataset from 15 subjects. The resulting normal uterus cell atlas contains more than 167K cells representing the lymphatic endothelium, blood endothelium, stromal, ciliated epithelium, unciliated epithelium, and immune cell populations. Focused analyses within each major cell type and comparisons with subtype labels from prior studies allowed us to document supporting evidence, resolve naming conflicts, and to propose a consensus annotation system of 39 subtypes. We release their gene expression centroids, differentially expressed genes, and mRNA patterns of literature-based markers as a shared community resource. We find many subtypes show dynamic changes over different phases of the cycle and identify multiple potential progenitor cells: compartment-wide progenitors for each major cell type, transitional cells that are upstream of other subtypes, and potential cross-lineage multipotent stromal progenitors that may be capable of replenishing the epithelial, stromal, and endothelial compartments. When compared to the healthy premenopausal samples, a postpartum and a postmenopausal uterus sample revealed substantially altered tissue composition, involving the rise or fall of stromal, endothelial, and immune cells. The cell taxonomy and molecular markers we report here are expected to inform studies of both basic biology of uterine function and its disorders. We present single-cell RNA sequencing data from seven individuals (five healthy pre-menopausal women, one post-menopausal woman, and one postpartum) and perform an integrated analysis of this data alongside 15 previously published scRNA-seq datasets. We identified 39 distinct cell subtypes across four major cell types in the uterus. By using RNA velocity analysis and centroid-centroid comparisons we identify multiple computationally predicted progenitor populations for each of the major cell compartments, as well as potential cross-compartment, multi-potent progenitors. While the function and interactions of these cell populations remain to be validated through future experiments, the markers and their \"dual characteristics\" that we describe will serve as a rich resource to the scientific community. Importantly, we address a significant challenge in the field: reconciling multiple uterine cell taxonomies being proposed. To achieve this, we focused on integrating historical and contemporary knowledge across multiple studies. By providing detailed evidence used for cell classification we lay the groundwork for establishing a stable, consensus cell atlas of the human uterus.