Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
120 result(s) for "Sherene Loi"
Sort by:
Intratumoral heterogeneity in cancer progression and response to immunotherapy
Most (if not all) tumors emerge and progress under a strong evolutionary pressure imposed by trophic, metabolic, immunological, and therapeutic factors. The relative impact of these factors on tumor evolution changes over space and time, ultimately favoring the establishment of a neoplastic microenvironment that exhibits considerable genetic, phenotypic, and behavioral heterogeneity in all its components. Here, we discuss the main sources of intratumoral heterogeneity and its impact on the natural history of the disease, including sensitivity to treatment, as we delineate potential strategies to target such a detrimental feature of aggressive malignancies. The many levels of heterogeneity within tumors dictate their response to therapy and should be considered in future therapeutic regimes.
Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer
Addition of the anti–PD-L1 antibody atezolizumab to nab-paclitaxel as first-line therapy for patients with advanced or metastatic triple-negative breast cancer significantly prolonged progression-free survival, particularly among those with PD-L1–positive tumors.
Palbociclib in Hormone-Receptor–Positive Advanced Breast Cancer
In women with hormone-receptor–positive metastatic breast cancer that had progressed after endocrine therapy, palbociclib plus fulvestrant was associated with progression-free survival of more than 9 months, as compared with less than 4 months with fulvestrant alone. Approximately 80% of breast cancers express estrogen receptors, progesterone receptors, or both. Endocrine therapies are the mainstay of treatment for these hormone-receptor–positive cancers, substantially reducing the relapse rate after presentation with early-stage cancer. 1 Despite advances in endocrine therapy, many women have a relapse during or after completing adjuvant therapy. The care of these women remains a considerable clinical challenge. Single-agent treatment with an aromatase inhibitor or tamoxifen has shown limited clinical benefit. 2 , 3 The selective estrogen-receptor degrader fulvestrant has modest activity in this population of patients, 4 , 5 and the development of effective therapies that can reverse resistance to endocrine therapy . . .
Triple-negative breast cancer: recent treatment advances version 1; peer review: 2 approved
Triple-negative breast cancer (TNBC) is a breast cancer subtype renowned for its capacity to affect younger women, metastasise early despite optimal adjuvant treatment and carry a poor prognosis. Neoadjuvant therapy has focused on combinations of systemic agents to optimise pathological complete response. Treatment algorithms now guide the management of patients with or without residual disease, but metastatic TNBC continues to harbour a poor prognosis. Innovative, multi-drug combination systemic therapies in the neoadjuvant and adjuvant settings have led to significant improvements in outcomes, particularly over the past decade. Recently published advances in the treatment of metastatic TNBC have shown impressive results with poly (ADP-ribose) polymerase (PARP) inhibitors and immunotherapy agents. Immunotherapy agents in combination with traditional systemic chemotherapy have been shown to alter the natural history of this devastating condition, particularly in patients whose tumours are positive for programmed cell death ligand 1 (PD-L1).
Seeing the forest and the tree: TILs and PD-L1 as immune biomarkers
Here we will provide an immune-focussed overview of biomarkers in early and advanced stage breast cancer. It should be noted from the outset that all the biomarkers under discussion here have not been tested in prospective clinical trials to determine their predictive performance. Such trials require very large sample sizes due to the statistical burden of testing an interaction between a treatment and a biomarker, which is compounded by the heterogeneous biology of breast cancer (Polley et al. in J Natl Cancer Inst 105:1677–1683 2013 [1]). For a detailed discussion of the immunobiology of breast cancer, analytical aspects of these biomarkers, emerging biomarkers such as tumour mutation burden and detailed immunotherapy clinical trial data, see other articles in this issue.
Clinical relevance of host immunity in breast cancer: from TILs to the clinic
Key Points The detection of tumour-infiltrating lymphocytes (TILs) on routine histology constitutes a robust prognostic and predictive biomarker in patients with early stage breast cancer, despite the complexity of host antitumour immunity Ongoing efforts to ensure reliable and reproducible reporting of TILs will facilitate their use in the routine management of breast cancer Exploiting the antitumour immune response in breast cancer for therapeutic benefit is currently an area of active research Early phase trials of antibodies that target programmed cell-death protein 1 (PD-1) and PD1 ligand 1 in patients with metastatic triple-negative breast cancer have shown promising and durable responses Useful biomarkers to predict benefit from immunotherapy are urgently needed — TILs might fulfil this role The presence of tumour-infiltrating lymphocytes (TILs) in breast tumours is related to a better prognosis in patients with early stage breast cancer, but the immunobiology of breast cancer remains to be well-characterized. In this Review, the authors discuss how to measure TIL-related parameters in the clinic, as well as their value as a prognostic and predictive biomarker in breast cancer. The rationale for enhancing immunity in breast cancer is also examined. The clinical relevance of the host immune system in breast cancer has long been unexplored. Studies developed over the past decade have highlighted the biological heterogeneity of breast cancer, prompting researchers to investigate whether the role of the immune system in this malignancy is similar across different molecular subtypes of the disease. The presence of high levels of lymphocytic infiltration has been consistently associated with a more-favourable prognosis in patients with early stage triple-negative and HER2-positive breast cancer. These infiltrates seem to reflect favourable host antitumour immune responses, suggesting that immune activation is important for improving survival outcomes. In this Review, we discuss the composition of the immune infiltrates observed in breast cancers, as well as data supporting the clinical relevance of host antitumour immunity, as represented by lymphocytic infiltration, and how this biomarker could be used in the clinical setting. We also discuss the rationale for enhancing immunity in breast cancer, including early data on the efficacy of T-cell checkpoint inhibition in this setting.
Pembrolizumab plus Chemotherapy in Advanced Triple-Negative Breast Cancer
In an interim analysis of this phase 3 trial, the addition of pembrolizumab to chemotherapy resulted in longer progression-free survival than chemotherapy alone among patients with advanced triple-negative breast cancer whose tumors expressed programmed death ligand 1 (PD-L1) with a combined positive score (CPS; the number of PD-L1-staining tumor cells, lymphocytes, and macrophages, divided by the total number of viable tumor cells, multiplied by 100) of 10 or more. The results of the final analysis of overall survival have not been reported. We randomly assigned patients with previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer in a 2:1 ratio to receive pembrolizumab (200 mg) every 3 weeks plus the investigator's choice of chemotherapy (nanoparticle albumin-bound paclitaxel, paclitaxel, or gemcitabine-carboplatin) or placebo plus chemotherapy. The primary end points were progression-free survival (reported previously) and overall survival among patients whose tumors expressed PD-L1 with a CPS of 10 or more (the CPS-10 subgroup), among patients whose tumors expressed PD-L1 with a CPS of 1 or more (the CPS-1 subgroup), and in the intention-to-treat population. Safety was also assessed. A total of 847 patients underwent randomization: 566 were assigned to the pembrolizumab-chemotherapy group, and 281 to the placebo-chemotherapy group. The median follow-up was 44.1 months. In the CPS-10 subgroup, the median overall survival was 23.0 months in the pembrolizumab-chemotherapy group and 16.1 months in the placebo-chemotherapy group (hazard ratio for death, 0.73; 95% confidence interval [CI], 0.55 to 0.95; two-sided P = 0.0185 [criterion for significance met]); in the CPS-1 subgroup, the median overall survival was 17.6 and 16.0 months in the two groups, respectively (hazard ratio, 0.86; 95% CI, 0.72 to 1.04; two-sided P = 0.1125 [not significant]); and in the intention-to-treat population, the median overall survival was 17.2 and 15.5 months, respectively (hazard ratio, 0.89; 95% CI, 0.76 to 1.05 [significance not tested]). Adverse events of grade 3, 4, or 5 that were related to the trial regimen occurred in 68.1% of the patients in the pembrolizumab-chemotherapy group and in 66.9% in the placebo-chemotherapy group, including death in 0.4% of the patients in the pembrolizumab-chemotherapy group and in no patients in the placebo-chemotherapy group. Among patients with advanced triple-negative breast cancer whose tumors expressed PD-L1 with a CPS of 10 or more, the addition of pembrolizumab to chemotherapy resulted in significantly longer overall survival than chemotherapy alone. (Funded by Merck Sharp and Dohme; KEYNOTE-355 ClinicalTrials.gov number, NCT02819518.).
Precision medicine for metastatic breast cancer—limitations and solutions
Key Points Recent research data defining the genomic landscape of breast cancer have reinforced the notion that this disease is driven by genomic alterations So far very few gene drivers validated in breast cancer have been identified, including ESR1 , ERBB 2 , PIK3CA and ATK1 Identification of drivers, characterization of resistant clones, identification of DNA repair defects and mechanisms of immune suppression are potential uses of genomics to personalize medicine The development of precision medicine for the treatment of breast cancer has several major challenges that include low frequency of targetable molecular alterations, feasibility of high-throughput technologies and availability of targeted therapy The development of precision medicine for the management of metastatic breast cancer is an appealing concept; however, major scientific and logistical challenges hinder its implementation in the clinic. The authors discuss the limitations, including the identification of driver events, and the possible solutions to the application of precision medicine in the management of patients with metastatic disease, which include scaling-up the number of patients screened for identifying a genomic alteration, the clustering of genomic alterations into pathways, and the development of personalized medicine trials. The development of precision medicine for the management of metastatic breast cancer is an appealing concept; however, major scientific and logistical challenges hinder its implementation in the clinic. The identification of driver mutational events remains the biggest challenge, because, with the few exceptions of ER , HER2 , PIK3CA and AKT1 , no validated oncogenic drivers of breast cancer exist. The development of bioinformatic tools to help identify driver mutations, together with assessment of pathway activation and dependency should help resolve this issue in the future. The occurrence of secondary resistance, such as ESR1 mutations, following endocrine therapy poses a further challenge. Ultra-deep sequencing and monitoring of circulating tumour DNA (ctDNA) could permit early detection of the genetic events underlying resistance and inform on combination therapy approaches. Beside these scientific challenges, logistical and operational issues are a major limitation to the development of precision medicine. For example, the low incidence of most candidate genomic alterations hinders randomized trials, as the number of patients to be screened would be too high. We discuss these limitations and the solutions, which include scaling-up the number of patients screened for identifying a genomic alteration, the clustering of genomic alterations into pathways, and the development of personalized medicine trials.
Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial
Immunotherapy in combination with chemotherapy has shown promising efficacy across many different tumour types. We report the prespecified second interim overall survival analysis of the phase 3 IMpassion130 study assessing the efficacy and safety of atezolizumab plus nab-paclitaxel in patients with unresectable, locally advanced or metastatic triple-negative breast cancer. In this randomised, placebo-controlled, double-blind, phase 3 trial, done in 246 academic centres and community oncology practices in 41 countries, patients aged 18 years or older, with previously untreated, histologically documented, locally advanced or metastatic triple-negative breast cancer, and Eastern Cooperative Oncology Group performance status of 0 or 1 were eligible. Patients were randomly assigned (1:1) using a permuted block method (block size of four) and an interactive voice–web response system. Randomisation was stratified by previous taxane use, liver metastases, and PD-L1 expression on tumour-infiltrating immune cells. Patients received atezolizumab 840 mg or matching placebo intravenously on day 1 and day 15 of every 28-day cycle and nab-paclitaxel 100 mg/m2 of body surface area intravenously on days 1, 8, and 15 until progression or unacceptable toxicity. Investigators, patients, and the funder were masked to treatment assignment. Coprimary endpoints were investigator-assessed progression-free survival per Response Evaluation Criteria in Solid Tumors version 1.1 and overall survival, assessed in the intention-to-treat population and in patients with PD-L1 immune cell-positive tumours (tumours with ≥1% PD-L1 expression). The final progression-free survival results were previously reported at the first interim overall survival analysis. The prespecified statistical testing hierarchy meant that overall survival in the subgroup of PD-L1 immune cell-positive patients could only be formally tested if overall survival was significantly different between the treatment groups in the intention-to-treat population. This study is registered with ClinicalTrials.gov, NCT02425891. Between June 23, 2015, and May 24, 2017, 902 patients were enrolled, of whom 451 were randomly assigned to receive atezolizumab plus nab-paclitaxel and 451 were assigned to receive placebo plus nab-paclitaxel (the intention-to-treat population). Six patients from each group did not receive treatment. At the second interim analysis (data cutoff Jan 2, 2019), median follow-up was 18·5 months (IQR 9·6–22·8) in the atezolizumab group and 17·5 months (8·4–22·4) in the placebo group. Median overall survival in the intention-to-treat patients was 21·0 months (95% CI 19·0–22·6) with atezolizumab and 18·7 months (16·9–20·3) with placebo (stratified hazard ratio [HR] 0·86, 95% CI 0·72–1·02, p=0·078). In the exploratory overall survival analysis in patients with PD-L1 immune cell-positive tumours, median overall survival was 25·0 months (95% CI 19·6–30·7) with atezolizumab versus 18·0 months (13·6–20·1) with placebo (stratified HR 0·71, 0·54–0·94]). As of Sept 3, 2018 (the date up to which updated safety data were available), the most common grade 3–4 adverse events were neutropenia (38 [8%] of 453 patients in the atezolizumab group vs 36 [8%] of 437 patients in the placebo group), peripheral neuropathy (25 [6%] vs 12 [3%]), decreased neutrophil count (22 [5%] vs 16 [4%]), and fatigue (17 [4%] vs 15 [3%]). Treatment-related deaths occurred in two (<1%) patients in the atezolizumab group (autoimmune hepatitis related to atezolizumab [n=1] and septic shock related to nab-paclitaxel [n=1]) and one (<1%) patient in the placebo group (hepatic failure). No new treatment-related deaths have been reported since the primary clinical data cutoff date (April 17, 2018). Consistent with the first interim analysis, this second interim overall survival analysis of IMpassion130 indicates no significant difference in overall survival between the treatment groups in the intention-to-treat population but suggests a clinically meaningful overall survival benefit with atezolizumab plus nab-paclitaxel in patients with PD-L1 immune cell-positive disease. However, this positive result could not be formally tested due to the prespecified statistical testing hierarchy. For patients with PD-L1 immune cell-positive metastatic triple-negative breast cancer, atezolizumab plus nab-paclitaxel is an important therapeutic option in a disease with high unmet need. F Hoffmann-La Roche and Genentech.
Tissue-resident memory T cells in breast cancer control and immunotherapy responses
The presence of tumour-infiltrating lymphocytes (TILs) is associated with favourable outcomes in patients with breast cancer as well as in those with other solid tumours. T cells make up a considerable proportion of TILs and current evidence suggests that CD8+ T cells are a crucial determinant of favourable clinical outcomes. Studies involving tumour material from numerous solid tumour types, including breast cancer, demonstrate that the CD8+ TILs include a subpopulation of tissue-resident memory T (TRM) cells. This subpopulation has features consistent with those of TRM cells, which have been described as having a role in peripheral immune surveillance and viral immunity in both humans and mice. Patients with early-stage triple-negative breast cancers harbouring greater numbers of TRM cells have a substantially improved prognosis and longer overall survival. Furthermore, patients with advanced-stage breast cancers with higher levels of TRM cells have increased response rates to anti-PD-1 antibodies. These findings have motivated efforts to explore whether CD8+ TRM cells include tumour-specific T cells, their functional responses to cognate antigens and their role in responses to immune checkpoint inhibition. In this Review, we focus on the clinical significance of CD8+ TRM cells and the potential ways that these cells can be targeted to improve the success of immunotherapeutic approaches in patients with breast cancer, as well as in those with other solid tumour types.TRM cells have a role in peripheral immune surveillance in several organs. The presence of TRM cells in the immune infiltrate is also associated with improved outcomes in patients with several solid tumour types, and these cells might have a role in the response to immune checkpoint inhibitors. In this Review, the authors describe the available date on the role of TRM cells in patients with breast cancer