Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
20 result(s) for "Sheth, Nirav"
Sort by:
Highly flexible, wearable, and disposable cardiac biosensors for remote and ambulatory monitoring
Contemporary cardiac and heart rate monitoring devices capture physiological signals using optical and electrode-based sensors. However, these devices generally lack the form factor and mechanical flexibility necessary for use in ambulatory and home environments. Here, we report an ultrathin (~1 mm average thickness) and highly flexible wearable cardiac sensor (WiSP) designed to be minimal in cost (disposable), light weight (1.2 g), water resistant, and capable of wireless energy harvesting. Theoretical analyses of system-level bending mechanics show the advantages of WiSP’s flexible electronics, soft encapsulation layers and bioadhesives, enabling intimate skin coupling. A clinical feasibility study conducted in atrial fibrillation patients demonstrates that the WiSP device effectively measures cardiac signals matching the Holter monitor, and is more comfortable. WiSP’s physical attributes and performance results demonstrate its utility for monitoring cardiac signals during daily activity, exertion and sleep, with implications for home-based care.Wearable electronics: digital fingers on the pulseA highly flexible, low-power wearable sensor that harvests energy and monitors cardiac signals has been developed by Lee et al. The team was led by Dr. Roozbeh Ghaffari and co-workers at MC10 Inc. and Northwestern University’s Center for Bio-Integrated Electronics at the Simpson & Querrey Institute, in collaboration with the Massachusetts General Hospital and Tsinghua University. The novel wearable sensors measure cardiac signals comparable in signal fidelity to those achievable with expensive monitoring systems used in hospitals. Wearable health-care solutions are fundamentally changing the way we monitor our well-being at all times of the day, no matter whether we are asleep at home or busy at work. The sensors reported here are lightweight, inexpensive to manufacture, robust to everyday use, and capable of wireless data transmission and energy harvesting to and from a smartphone. The approach proved successful for measuring episodic electrocardiograms (ECG) and continuous heart rate signals with significantly higher patient comfort scores compared to standard Holter monitors in an initial pilot study conducted at the Massachusetts General Hospital (MGH).
Monitoring gait in multiple sclerosis with novel wearable motion sensors
Mobility impairment is common in people with multiple sclerosis (PwMS) and there is a need to assess mobility in remote settings. Here, we apply a novel wireless, skin-mounted, and conformal inertial sensor (BioStampRC, MC10 Inc.) to examine gait characteristics of PwMS under controlled conditions. We determine the accuracy and precision of BioStampRC in measuring gait kinematics by comparing to contemporary research-grade measurement devices. A total of 45 PwMS, who presented with diverse walking impairment (Mild MS = 15, Moderate MS = 15, Severe MS = 15), and 15 healthy control subjects participated in the study. Participants completed a series of clinical walking tests. During the tests participants were instrumented with BioStampRC and MTx (Xsens, Inc.) sensors on their shanks, as well as an activity monitor GT3X (Actigraph, Inc.) on their non-dominant hip. Shank angular velocity was simultaneously measured with the inertial sensors. Step number and temporal gait parameters were calculated from the data recorded by each sensor. Visual inspection and the MTx served as the reference standards for computing the step number and temporal parameters, respectively. Accuracy (error) and precision (variance of error) was assessed based on absolute and relative metrics. Temporal parameters were compared across groups using ANOVA. Mean accuracy±precision for the BioStampRC was 2±2 steps error for step number, 6±9ms error for stride time and 6±7ms error for step time (0.6-2.6% relative error). Swing time had the least accuracy±precision (25±19ms error, 5±4% relative error) among the parameters. GT3X had the least accuracy±precision (8±14% relative error) in step number estimate among the devices. Both MTx and BioStampRC detected significantly distinct gait characteristics between PwMS with different disability levels (p<0.01). BioStampRC sensors accurately and precisely measure gait parameters in PwMS across diverse walking impairment levels and detected differences in gait characteristics by disability level in PwMS. This technology has the potential to provide granular monitoring of gait both inside and outside the clinic.
A machine learning approach for gait speed estimation using skin-mounted wearable sensors: From healthy controls to individuals with multiple sclerosis
Gait speed is a powerful clinical marker for mobility impairment in patients suffering from neurological disorders. However, assessment of gait speed in coordination with delivery of comprehensive care is usually constrained to clinical environments and is often limited due to mounting demands on the availability of trained clinical staff. These limitations in assessment design could give rise to poor ecological validity and limited ability to tailor interventions to individual patients. Recent advances in wearable sensor technologies have fostered the development of new methods for monitoring parameters that characterize mobility impairment, such as gait speed, outside the clinic, and therefore address many of the limitations associated with clinical assessments. However, these methods are often validated using normal gait patterns; and extending their utility to subjects with gait impairments continues to be a challenge. In this paper, we present a machine learning method for estimating gait speed using a configurable array of skin-mounted, conformal accelerometers. We establish the accuracy of this technique on treadmill walking data from subjects with normal gait patterns and subjects with multiple sclerosis-induced gait impairments. For subjects with normal gait, the best performing model systematically overestimates speed by only 0.01 m/s, detects changes in speed to within less than 1%, and achieves a root-mean-square-error of 0.12 m/s. Extending these models trained on normal gait to subjects with gait impairments yields only minor changes in model performance. For example, for subjects with gait impairments, the best performing model systematically overestimates speed by 0.01 m/s, quantifies changes in speed to within 1%, and achieves a root-mean-square-error of 0.14 m/s. Additional analyses demonstrate that there is no correlation between gait speed estimation error and impairment severity, and that the estimated speeds maintain the clinical significance of ground truth speed in this population. These results support the use of wearable accelerometer arrays for estimating walking speed in normal subjects and their extension to MS patient cohorts with gait impairment.
A systematic review of feasibility studies promoting the use of mobile technologies in clinical research
Mobile technologies, such as smart phone applications, wearables, ingestibles, and implantables, are increasingly used in clinical research to capture study endpoints. On behalf of the Clinical Trials Transformation Initiative, we aimed to conduct a systematic scoping review and compile a database summarizing pilot studies addressing mobile technology sensor performance, algorithm development, software performance, and/or operational feasibility, in order to provide a resource for guiding decisions about which technology is most suitable for a particular trial. Our systematic search identified 275 publications meeting inclusion criteria. From these papers, we extracted data including the medical condition, concept of interest captured by the mobile technology, outcomes captured by the digital measurement, and details regarding the sensors, algorithms, and study sample. Sixty-seven percent of the technologies identified were wearable sensors, with the remainder including tablets, smartphones, implanted sensors, and cameras. We noted substantial variability in terms of reporting completeness and terminology used. The data have been compiled into an online database maintained by the Clinical Trials Transformation Initiative that can be filtered and searched electronically, enabling a user to find information most relevant to their work. Our long-term goal is to maintain and update the online database, in order to promote standardization of methods and reporting, encourage collaboration, and avoid redundant studies, thereby contributing to the design and implementation of efficient, high-quality trials.
Multiple Wearable Sensors in Parkinson and Huntington Disease Individuals: A Pilot Study in Clinic and at Home
Background: Clinician rating scales and patient-reported outcomes are the principal means of assessing motor symptoms in Parkinson disease and Huntington disease. However, these assessments are subjective and generally limited to episodic in-person visits. Wearable sensors can objectively and continuously measure motor features and could be valuable in clinical research and care. Methods: We recruited participants with Parkinson disease, Huntington disease, and prodromal Huntington disease (individuals who carry the genetic marker but do not yet exhibit symptoms of the disease), and controls to wear 5 accelerometer-based sensors on their chest and limbs for standardized in-clinic assessments and for 2 days at home. The study’s aims were to assess the feasibility of use of wearable sensors, to determine the activity (lying, sitting, standing, walking) of participants, and to survey participants on their experience. Results: Fifty-six individuals (16 with Parkinson disease, 15 with Huntington disease, 5 with prodromal Huntington disease, and 20 controls) were enrolled in the study. Data were successfully obtained from 99.3% (278/280) of sensors dispatched. On average, individuals with Huntington disease spent over 50% of the total time lying down, substantially more than individuals with prodromal Huntington disease (33%, p = 0.003), Parkinson disease (38%, p = 0.01), and controls (34%; p < 0.001). Most (86%) participants were “willing” or “very willing” to wear the sensors again. Conclusions: Among individuals with movement disorders, the use of wearable sensors in clinic and at home was feasible and well-received. These sensors can identify statistically significant differences in activity profiles between individuals with movement disorders and those without. In addition, continuous, objective monitoring can reveal disease characteristics not observed in clinic.
Assessment of Postural Sway in Individuals with Multiple Sclerosis Using a Novel Wearable Inertial Sensor
Balance impairment is common in individuals with multiple sclerosis (MS). However, objective assessment of balance usually requires clinical expertise and/or the use of expensive and obtrusive measuring equipment. These barriers to the objective assessment of balance may be overcome with the development of a lightweight inertial sensor system. In this study, we examined the concurrent validity of a novel wireless, skin-mounted inertial sensor system (BioStamp®, MC10 Inc.) to measure postural sway in individuals with MS by comparing measurement agreement between this novel sensor and gold standard measurement tools (force plate and externally validated inertial sensor). A total of 39 individuals with MS and 15 healthy controls participated in the study. Participants with MS were divided into groups based on the amount of impairment (MS Mild : EDSS 2–4, n = 19; MS Severe : EDSS ≥6, n = 20). The balance assessment consisted of two 30-s quiet standing trials in each of three conditions: eyes open/firm surface, eyes closed/firm surface, and eyes open/foam surface. For each trial, postural sway was recorded with a force plate (Bertec) and simultaneously using two accelerometers (BioStamp and Xsens) mounted on the participant’s posterior trunk at L5. Sway metrics (sway area, sway path length, root mean square amplitude, mean velocity, JERK, and total power) were derived to compare the measurement agreement among the measurement devices. Excellent agreement (intraclass correlation coefficients >0.9) between sway metrics derived from the BioStamp and the MTx sensors were observed across all conditions and groups. Good to excellent correlations (r >0.7) between devices were observed in all sway metrics and conditions. Additionally, the acceleration sway metrics were nearly as effective as the force plate sway metrics in differentiating individuals with poor balance from healthy controls. Overall, the BioStamp sensor is a valid and objective measurement tool for postural sway assessment. This novel, lightweight and portable sensor may offer unique advantages in tracking patient’s postural performance.
Use of Mobile Devices to Measure Outcomes in Clinical Research, 2010–2016: A Systematic Literature Review
Background: The use of mobile devices in clinical research has advanced substantially in recent years due to the rapid pace of technology development. With an overall aim of informing the future use of mobile devices in interventional clinical research to measure primary outcomes, we conducted a systematic review of the use of and clinical outcomes measured by mobile devices (mobile outcomes) in observational and interventional clinical research. Method: We conducted a PubMed search using a range of search terms to retrieve peer-reviewed articles on clinical research published between January 2010 and May 2016 in which mobile devices were used to measure study outcomes. We screened each publication for specific inclusion and exclusion criteria. We then identified and qualitatively summarized the use of mobile outcome assessments in clinical research, including the type and design of the study, therapeutic focus, type of mobile device(s) used, and specific mobile outcomes reported. Results: The search retrieved 2,530 potential articles of interest. After screening, 88 publications remained. Twenty-five percent of the publications (n = 22) described mobile outcomes used in interventional research, and the rest (n = 66) described observational clinical research. Thirteen therapeutic areas were represented. Five categories of mobile devices were identified: (1) inertial sensors, (2) biosensors, (3) pressure sensors and walkways, (4) medication adherence monitors, and (5) location monitors; inertial sensors/accelerometers were most common (reported in 86% of the publications). Among the variety of mobile outcomes, various assessments of physical activity were most common (reported in 74% of the publications). Other mobile outcomes included assessments of sleep, mobility, and pill adherence, as well as biomarkers assessed using a mobile device, including cardiac measures, glucose, gastric reflux, respiratory measures, and intensity of head-related injury. Conclusion: Mobile devices are being widely used in clinical research to assess outcomes, although their use in interventional research to assess therapeutic effectiveness is limited. For mobile devices to be used more frequently in pivotal interventional research – such as trials informing regulatory decision-making – more focus should be placed on: (1) consolidating the evidence supporting the clinical meaningfulness of specific mobile outcomes, and (2) standardizing the use of mobile devices in clinical research to measure specific mobile outcomes (e.g., data capture frequencies, placement of device). To that aim, this manuscript offers a broad overview of the various mobile outcome assessments currently used in observational and interventional research, and categorizes and consolidates this information for researchers interested in using mobile devices to assess outcomes in interventional research.
In Search of the Optimal Antithrombotic Regimen for Intracerebral Hemorrhage Survivors with Atrial Fibrillation
Spontaneous intracerebral hemorrhage (ICH) constitutes 10–15% of all strokes, and is a significant cause of mortality and morbidity. Survivors of ICH, especially those with atrial fibrillation (AF), are at risk for both recurrent hemorrhagic and ischemic cerebrovascular events. A conundrum in the field of vascular neurology, neurosurgery, and cardiology has been the decision to initiate or resume versus withhold anticoagulation in survivors of ICH with AF. To initiate anticoagulation would decrease the risk of ischemic stroke but may increase the risk of hemorrhage. To withhold anticoagulation maintains a lower risk of hemorrhage but does not decrease the risk of ischemic stroke. In this narrative review, we discuss the evidence for and against the use of antithrombotics in ICH survivors with AF, focusing on recently completed and ongoing clinical trials.
To compare the effects of aerobic exercise and yoga on Premenstrual syndrome
BACKGROUND: Eighty percent of women during their reproductive age experience some symptoms attributed to premenstrual phase of the menstrual cycle. Premenstrual syndrome (PMS) is characterized by emotional, behavioral, and physical symptoms that occur during late luteal phase of menstrual cycle and are relieved after the onset of menstruation. Aerobic exercise and yoga are one of the ways to reduce these symptoms. The aim of this study was to compare the effects of aerobic exercise and yoga on PMS. MATERIALS AND METHODS: A total of 72 participants of PMS, referred for physiotherapy treatment (mean age 28 years), were enrolled and allocated into two groups (Group A and B) by simple computerized randomization. Patients in Group A received aerobic exercise and in Group B received yoga movements for 40 min, 3 times a week for 1 month. The pain intensity (Visual Analog Scale) and PMS Scale were measured before, at the end of 15 days, and 1 month of treatment program. RESULTS: Data were analyzed by paired t-test, unpaired t-test, and one-way ANOVA; and the results showed that both aerobic exercise and yoga movements significantly reduced pain intensity and PMS symptoms. Significant reduction in PMS symptoms was found in patients treated with yoga compared to aerobic exercise; however, no significant difference was found in pain intensity between these two groups (P > 0.05). CONCLUSION: It is concluded that both aerobic exercise and yoga movements are effective in treating PMS; however, yoga is more effective in relieving the symptoms of PMS than aerobic exercise.
Promotion of Bone Morphogenetic Protein Signaling by Tetraspanins and Glycosphingolipids
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor β (TGFβ) superfamily of secreted molecules. BMPs play essential roles in multiple developmental and homeostatic processes in metazoans. Malfunction of the BMP pathway can cause a variety of diseases in humans, including cancer, skeletal disorders and cardiovascular diseases. Identification of factors that ensure proper spatiotemporal control of BMP signaling is critical for understanding how this pathway is regulated. We have used a unique and sensitive genetic screen to identify the plasma membrane-localized tetraspanin TSP-21 as a key new factor in the C. elegans BMP-like \"Sma/Mab\" signaling pathway that controls body size and postembryonic M lineage development. We showed that TSP-21 acts in the signal-receiving cells and genetically functions at the ligand-receptor level. We further showed that TSP-21 can associate with itself and with two additional tetraspanins, TSP-12 and TSP-14, which also promote Sma/Mab signaling. TSP-12 and TSP-14 can also associate with SMA-6, the type I receptor of the Sma/Mab pathway. Finally, we found that glycosphingolipids, major components of the tetraspanin-enriched microdomains, are required for Sma/Mab signaling. Our findings suggest that the tetraspanin-enriched membrane microdomains are important for proper BMP signaling. As tetraspanins have emerged as diagnostic and prognostic markers for tumor progression, and TSP-21, TSP-12 and TSP-14 are all conserved in humans, we speculate that abnormal BMP signaling due to altered expression or function of certain tetraspanins may be a contributing factor to cancer development.