Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
529
result(s) for
"Shi, Ce"
Sort by:
Breast cancer animal models and applications
2020
Breast cancer is the most common malignancy in women. Basic and translational breast cancer research relies heavily on experimental animal models. Ideally, such models for breast cancer should have commonality with human breast cancer in terms of tumor etiology, biological behavior, pathology, and response to therapeutics. This review introduces current progress in different breast cancer experimental animal models and analyzes their characteristics, advantages, disadvantages, and potential applications. Finally, we propose future research directions for breast cancer animal models.
Journal Article
Editorial: Aquaculture environment regulation and system engineering
2023
Editorial on the Research Topic Aquaculture environment regulation and system engineering Aquatic products are a major source of high-quality foods for humans, and as the population grows, global fisheries and aquaculture production is expanding. Since the 1990s, capture production of fisheries has reached a bottleneck and tended to stabilize at around 90 million tons (FAO, 2022). Many studies have demonstrated promoting aquatic organism growth by manipulating environmental factors (Li et al., 2020; Chen et al., 2021; Chen et al., 2022; Chen et al., 2023; Yu et al., 2023). [...]understanding the environmental demand of aquatic animals is the premise of designing an intensive aquaculture system. [...]the basic knowledge of bioengineering interfaces in aquaculture is important in designing and developing effective aquaculture systems. Effects of light intensity on growth performance, biochemical composition, fatty acid composition and energy metabolism of Scylla paramamosain during indoor overwintering.
Journal Article
Bioprotection Potential of Lacticaseibacillus rhamnosus LRH01 and Lactiplantibacillus plantarum LP01 against Spoilage-Associated Penicillium Strains in Yoghurt
2023
Penicillium spp. are considered a major spoilage fungus in dairy products. Due to the growing concerns over food safety issues and the demand for “clean label” food products from consumers, the use of lactic acid bacteria (LAB) as a bioprotective tool to control fungal spoilage of dairy products appears to be a promising alternative. Here, the antifungal activities of ten LAB cultures against five dairy-spoilage-associated Penicillium strains were studied in a model system, and the most potent bioprotective cultures were further tested in yoghurt. Lacticaseibacillus rhamnosus (L. rhamnosus) LRH01 and Lactiplantibacillus plantarum (L. plantarum) LP01 exhibited potent antifungal efficacy at low concentrations. The inhibitory effects of cell-containing fermentates (C-fermentates), cell-free fermentates (CF-fermentates), and volatiles produced by the two cultures were tested in a yoghurt serum medium. The C-fermentates showed antifungal effects, while the removal of cells from C-fermentates led to decreased antifungal activities. Volatiles alone displayed some antifungal efficiency, but less than the fermentates. In a yoghurt matrix, the specific effect of manganese depletion by the bioprotective cultures on mold growth was investigated. Here, the LAB cultures could completely suppress the growth of molds, while addition of manganese partially or fully restored the mold growth, demonstrating that manganese depletion played a key role in the antifungal activity of the tested LAB cultures in the yoghurt matrix. Both L. plantarum LP01 and L. rhamnosus LRH01 showed efficient antifungal activities in the yoghurt serum, while L. rhamnosus LRH01 exhibited the most potent inhibitory effects on Penicillium strains when added during the processing of the yoghurt with subsequent storage at 7 °C for 22 days. Our findings suggested that L. rhamnosus LRH01 could be a promising bioprotective culture for yoghurt biopreservation.
Journal Article
Monitoring minimal/measurable residual disease in B-cell acute lymphoblastic leukemia by flow cytometry during targeted therapy
2021
B-cell acute lymphoblastic leukemia (B-ALL) is a hematologic malignancy of B-type lymphoid precursor cells. Minimal/measurable residual disease (MRD) is an important prognostic factor for B-ALL relapse. Traditional flow cytometry detection mainly relies on CD19-based gating strategies. However, relapse of CD19-negative B-ALL frequently occurs in patients who receive cellular and targeted therapy. This review will summarize the technical aspects of standard MRD assessment in B-ALL by flow cytometry, and then discuss the challenges of MRD strategies to deal with the scenario of CD19 negative or dim B-ALL relapse.
Journal Article
Activation of RAS/MAPK pathway confers MCL-1 mediated acquired resistance to BCL-2 inhibitor venetoclax in acute myeloid leukemia
by
Battula, Venkata L.
,
Zhang, Qi
,
Han, Lina
in
631/67/1990
,
692/308/575
,
Acute myeloid leukemia
2022
Despite high initial response rates, acute myeloid leukemia (AML) treated with the BCL-2–selective inhibitor venetoclax (VEN) alone or in combinations commonly acquires resistance. We performed gene/protein expression, metabolomic and methylation analyses of isogenic AML cell lines sensitive or resistant to VEN, and identified the activation of RAS/MAPK pathway, leading to increased stability and higher levels of MCL-1 protein, as a major acquired mechanism of VEN resistance. MCL-1 sustained survival and maintained mitochondrial respiration in VEN-RE cells, which had impaired electron transport chain (ETC) complex II activity, and MCL-1 silencing or pharmacologic inhibition restored VEN sensitivity. In support of the importance of RAS/MAPK activation, we found by single-cell DNA sequencing rapid clonal selection of RAS-mutated clones in AML patients treated with VEN-containing regimens. In summary, these findings establish RAS/MAPK/MCL-1 and mitochondrial fitness as key survival mechanisms of VEN-RE AML and provide the rationale for combinatorial strategies effectively targeting these pathways.
Journal Article
Pearls, power, and predation: an ecological perspective on marine resource governance in ancient China
2025
In ancient China, pearls were considered a luxury item and a symbol of imperial power. The competition for pearl harvesting rights was essentially an ecological and spatial contest among central imperial authority, eunuch factions, and local elites. This struggle prominently revealed the complex interactions between power, ecology, and law. The imperial state’s predatory pearl-harvesting policies led to a sharp decline in pearl oyster populations in the Beibu Gulf, exacerbating ecological pressures that triggered plagues, the displacement of Tanka people, and a surge in piracy, ultimately creating a vicious cycle of “environmental collapse–social disorder.” Although the Ming dynasty imposed strict prohibitions on private pearl harvesting, the eunuch monopoly and the breakdown of law enforcement rendered these bans ineffective. The contest between local officials and central policies further exposed the profound contradiction between the “legislative ideal” and the “governance reality” within the imperial autocratic system. By integrating local historical records with official documents, this study examines the interplay of power, resources, and ecology in the historical pearl industry of the South China Sea. Such an environmental perspective not only sheds light on institutional transformations over time but also provides historical insights into the sustainable governance of marine resources today.
Journal Article
Advances in retina imaging as potential biomarkers for early diagnosis of Alzheimer’s disease
by
Wang, Yanjiang
,
Zhang, Ying
,
Lu, Fan
in
Aged
,
Aged, 80 and over
,
Alzheimer Disease - diagnosis
2021
As the most common form of dementia, Alzheimer’s disease (AD) is characterized by progressive cognitive impairments and constitutes a major social burden. Currently, the invasiveness and high costs of tests have limited the early detection and intervention of the disease. As a unique window of the brain, retinal changes can reflect the pathology of the brain. In this review, we summarize current understanding of retinal structures in AD, mild cognitive impairment (MCI) and preclinical AD, focusing on neurodegeneration and microvascular changes measured using optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA) technologies. The literature suggests that the impairment of retinal microvascular network and neural microstructure exists in AD, MCI and even preclinical AD. These findings provide valuable insights into a better understanding of disease pathogenesis and demonstrate that retinal changes are potential biomarkers for early diagnosis of AD and monitoring of disease progression.
Journal Article
Application of Xanthan-Gum-Based Edible Coating Incorporated with Litsea cubeba Essential Oil Nanoliposomes in Salmon Preservation
2022
Salmon is prone to be contaminated by Vibrio parahaemolyticus (V. parahaemolyticus), leading to the deterioration of salmon quality and the occurrence of food-borne diseases. In this study, we aimed to develop a novel xanthan-gum-based edible coating embedded with nano-encapsulated Litsea cubeba essential oil (LC-EO) for salmon preservation at 4 °C. First, the results of the growth curves and scanning electron microscopy (SEM) showed that LC-EO displayed potent antibacterial activity against V. parahaemolyticus; the optimal concentration of LC-EO in the liposomes was 5 mg/mL, and the maximal encapsulation efficiency (EE) was 37.8%. The particle size, polydispersity coefficient (PDI), and zeta potential of the liposomes were 168.10 nm, 0.250, and −32.14 mV, respectively. The rheological test results of xanthan-gum-based edible coatings incorporating liposomes showed that the prepared coating was suitable for applying on food surfaces. The results in the challenge test at 4 °C demonstrated that the treatment of 1:3 (liposome: xanthan gum, v/v) coating performed the best preservative properties, the coating treatment delayed the oxidation of salmon, and controlled the growth of V. parahaemolyticus. These findings suggest that the coatings formulated in this study could be used as a promising approach to control V. parahaemolyticus contamination and maintain salmon quality.
Journal Article
Structures of two distinct conformations of holo-non-ribosomal peptide synthetases
2016
X-ray crystal structures of two distinct steps in the catalytic cycle of non-ribosomal peptide synthetases are described, offering the potential to generate novel products through engineering enzyme activity.
Holo-non-ribosomal peptide synthetases
Non-ribosomal peptides, such as the antibiotic vancomycin and the immunosuppressant cyclosporin A, are peptidic secondary metabolites produced by microorganisms. Non-ribosomal peptide synthetases (NRPSs) are a family of large enzymes that utilize multiple catalytic domains to catalyse sequential steps in the biosynthetic pathway of this family of 'natural products'. Two papers in this issue of
Nature
present X-ray crystal structures that indicate that NRPSs are substantially more dynamic than previously believed. Andrew Gulick and colleagues studied two holo-non-ribosomal peptide synthetase modules, each revealing a distinct step in the catalytic cycle. Martin Schmeing and colleagues report several structures of LgrA, which is involved in the biosynthesis of the antibiotic gramicidin.
Many important natural products are produced by multidomain non-ribosomal peptide synthetases (NRPSs)
1
,
2
,
3
,
4
. During synthesis, intermediates are covalently bound to integrated carrier domains and transported to neighbouring catalytic domains in an assembly line fashion
5
. Understanding the structural basis for catalysis with non-ribosomal peptide synthetases will facilitate bioengineering to create novel products. Here we describe the structures of two different holo-non-ribosomal peptide synthetase modules, each revealing a distinct step in the catalytic cycle. One structure depicts the carrier domain cofactor bound to the peptide bond-forming condensation domain, whereas a second structure captures the installation of the amino acid onto the cofactor within the adenylation domain. These structures demonstrate that a conformational change within the adenylation domain guides transfer of intermediates between domains. Furthermore, one structure shows that the condensation and adenylation domains simultaneously adopt their catalytic conformations, increasing the overall efficiency in a revised structural cycle. These structures and the single-particle electron microscopy analysis demonstrate a highly dynamic domain architecture and provide the foundation for understanding the structural mechanisms that could enable engineering of novel non-ribosomal peptide synthetases.
Journal Article
Identification of Valid Reference Genes for the Normalization of RT-qPCR Expression Studies in Human Breast Cancer Cell Lines Treated with and without Transient Transfection
2015
Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is a powerful technique for examining gene expression changes during tumorigenesis. Target gene expression is generally normalized by a stably expressed endogenous reference gene; however, reference gene expression may differ among tissues under various circumstances. Because no valid reference genes have been documented for human breast cancer cell lines containing different cancer subtypes treated with transient transfection, we identified appropriate and reliable reference genes from thirteen candidates in a panel of 10 normal and cancerous human breast cell lines under experimental conditions with/without transfection treatments with two transfection reagents. Reference gene expression stability was calculated using four algorithms (geNorm, NormFinder, BestKeeper and comparative delta Ct), and the recommended comprehensive ranking was provided using geometric means of the ranking values using the RefFinder tool. GeNorm analysis revealed that two reference genes should be sufficient for all cases in this study. A stability analysis suggests that 18S rRNA-ACTB is the best reference gene combination across all cell lines; ACTB-GAPDH is best for basal breast cancer cell lines; and HSPCB-ACTB is best for ER+ breast cancer cells. After transfection, the stability ranking of the reference gene fluctuated, especially with Lipofectamine 2000 transfection reagent in two subtypes of basal and ER+ breast cell lines. Comparisons of relative target gene (HER2) expression revealed different expressional patterns depending on the reference genes used for normalization. We suggest that identifying the most stable and suitable reference genes is critical for studying specific cell lines under certain circumstances.
Journal Article