Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
92
result(s) for
"Shi, Zirui"
Sort by:
Memristive self-learning logic circuit with application to encoder and decoder
by
Sun, Jingru
,
Hong, Qinghui
,
Shi, Zirui
in
Artificial Intelligence
,
Boolean algebra
,
Circuit design
2021
Different logic circuits based on memristors have been extensively investigated. However, most of these circuits require accurate initialization. A self-learning logic circuit based on mermristors that can achieve various logic gates without initialization is proposed in this paper. Three functional blocks, including a sum block, a learning block, and a compare block, are elaborately designed in the proposed logic circuit. Programmable switches in the sum and compare blocks enable the circuit to perform various logic gates, such as Boolean, IMPLY, and random logical combinations. In these various logical operations, the learning block can automatically obtain different memristance states. The aforementioned logic operations can easily be extended to multi-fan-in logic and logical cascade operations. Circuit designs of an encoder and decoder are considered as application examples. Finally, PSpice simulation results of the logic circuits and extended applications are provided. Simulation results indicate that the proposed circuit can effectively perform different logic operations and exhibits excellent robustness to circuit device variations.
Journal Article
A high capacity small molecule quinone cathode for rechargeable aqueous zinc-organic batteries
2021
Rechargeable aqueous zinc-organic batteries are promising energy storage systems with low-cost aqueous electrolyte and zinc metal anode. The electrochemical properties can be systematically adjusted with molecular design on organic cathode materials. Herein, we use a symmetric small molecule quinone cathode, tetraamino-p-benzoquinone (TABQ), with desirable functional groups to protonate and accomplish dominated proton insertion from weakly acidic zinc electrolyte. The hydrogen bonding network formed with carbonyl and amino groups on the TABQ molecules allows facile proton conduction through the Grotthuss-type mechanism. It guarantees activation energies below 300 meV for charge transfer and proton diffusion. The TABQ cathode delivers a high capacity of 303 mAh g
−1
at 0.1 A g
−1
in a zinc-organic battery. With the increase of current density to 5 A g
−1
, 213 mAh g
−1
capacity is still preserved with stable cycling for 1000 times. Our work proposes an effective approach towards high performance organic electrode materials.
The flexible structural design of organic materials make them promising candidates for cathode in rechargeable batteries. Here, the authors report a tetraamino-p-benzoquinone cathode which realizes facile proton conduction by the Grotthuss-type mechanism and shows excellent electrochemical performance.
Journal Article
Multiple Tin Compounds Modified Carbon Fibers to Construct Heterogeneous Interfaces for Corrosion Prevention and Electromagnetic Wave Absorption
2025
Highlights
Excellent impedance matching through component modulation engineering.
Rich heterogeneous interfaces are constructed to realize excellent electromagnetic wave (EMW) absorption performance.
Long-term corrosion protection and excellent EMW absorption properties.
Currently, the demand for electromagnetic wave (EMW) absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent. Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption. However, interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption. In this study, multi-component tin compound fiber composites based on carbon fiber (CF) substrate were prepared by electrospinning, hydrothermal synthesis, and high-temperature thermal reduction. By utilizing the different properties of different substances, rich heterogeneous interfaces are constructed. This effectively promotes charge transfer and enhances interfacial polarization and conduction loss. The prepared SnS/SnS
2
/SnO
2
/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt% in epoxy resin. The minimum reflection loss (RL) is − 46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz. Moreover, SnS/SnS
2
/SnO
2
/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces. Therefore, this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.
Journal Article
m6A modification–mediated lncRNA TP53TG1 inhibits gastric cancer progression by regulating CIP2A stability
by
Shi, Peng
,
Zhou, Xingyu
,
Peng, Jianjun
in
1-Phosphatidylinositol 3-kinase
,
AKT protein
,
ALKBH5
2022
Long noncoding RNAs (lncRNAs) are associated with various types of cancer. However, the precise roles of many lncRNAs in tumor progression remain unclear. In this study, we found that the expression of the lncRNA TP53TG1 was downregulated in gastric cancer (GC) and it functioned as a tumor suppressor. In addition, low TP53TG1 expression was significantly associated with poor survival in patients with GC. TP53TG1 inhibited the proliferation, metastasis, and cell cycle progression of GC cells, while it promoted their apoptosis. m6A modification sites are highly abundant on TP53TG1, and demethylase ALKBH5 reduces TP53TG1 stability and downregulates its expression. TP53TG1 interacts with cancerous inhibitor of protein phosphatase 2A (CIP2A) and triggers its ubiquitination‐mediated degradation, resulting in the inhibition of the PI3K/AKT pathway. These results suggest that TP53TG1 plays an important role in inhibiting the progression of GC and provides a crucial target for GC treatment.
Reveal the important role of TP53TG1 as a tumor suppressor in inhibiting the progression of gastric cancer (GC). Explore the specific mechanism by which TP53TG1 binds to CIP2A and promotes its ubiquitination, thus inhibiting the activation of the PI3K/AKT pathway. Discover the new mechanism of TP53TG1 downregulation mediated by m6A methylation modification in GC.
Journal Article
Ferritin-based targeted delivery of arsenic to diverse leukaemia types confers strong anti-leukaemia therapeutic effects
2021
Trivalent arsenic (AsIII) is an effective agent for treating patients with acute promyelocytic leukaemia, but its ionic nature leads to several major limitations like low effective concentrations in leukaemia cells and substantial off-target cytotoxicity, which limits its general application to other types of leukaemia. Here, building from our clinical discovery that cancerous cells from patients with different leukaemia forms featured stable and strong expression of CD71, we designed a ferritin-based As nanomedicine, As@Fn, that bound to leukaemia cells with very high affinity, and efficiently delivered cytotoxic AsIII into a large diversity of leukaemia cell lines and patient cells. Moreover, As@Fn exerted strong anti-leukaemia effects in diverse cell-line-derived xenograft models, as well as in a patient-derived xenograft model, in which it consistently outperformed the gold standard, showing its potential as a precision treatment for a variety of leukaemias.Trivalent arsenic (AsIII) is a clinically approved treatment agent for patients with promyelocytic leukaemia, but cannot be used for other types of leukaemia due to its toxicity. Here the authors show that different patient-derived leukaemia cells express CD71 and design a ferritin-based nanoparticle for specific delivery of AsIII to these cells, demonstrating substantially improved efficacy towards different leukaemia types in animal models, with reduced side effects.
Journal Article
Two types of corner states in two dimensional photonic crystals with finite sizes
2024
Using two-dimensional square lattice photonic crystals (PCs) with different topological properties, we design different combined structures to construct two types of topological corner states (CSs), named as Type I and Type II CSs. Then by tuning sizes of inner PCs in the combined structures, we systematically investigate size effects on the two types of CSs. Numerical results demonstrate as the structures decrease to their critical sizes, due to the interactions of opposite interfaces and the couplings of corners, size changes of inner PCs in the combined structures have significant effects on the frequencies, degeneracies and mode field distributions of the two types of CSs. Moreover, Type I CSs peform better topological stability than Type II CSs during the size changes of structures. We also monitor mode field localizations of the two types of CSs and reveal that their localizations are only related to the types of the CSs, and have no relations to sizes and overall symmetries of the combined structures. Our research enriches the study of higher order topological CSs and paves the way for design and manufacture of optical micro–nano devices with photonic topological CSs.
Journal Article
CD44 connects autophagy decline and ageing in the vascular endothelium
2023
The decline of endothelial autophagy is closely related to vascular senescence and disease, although the molecular mechanisms connecting these outcomes in vascular endothelial cells (VECs) remain unclear. Here, we identify a crucial role for CD44, a multifunctional adhesion molecule, in controlling autophagy and ageing in VECs. The CD44 intercellular domain (CD44ICD) negatively regulates autophagy by reducing PIK3R4 and PIK3C3 levels and disrupting STAT3-dependent PtdIns3K complexes. CD44 and its homologue clec-31 are increased in ageing vascular endothelium and
Caenorhabditis elegans
, respectively, suggesting that an age-dependent increase in CD44 induces autophagy decline and ageing phenotypes. Accordingly, CD44 knockdown ameliorates age-associated phenotypes in VECs. The endothelium-specific CD44ICD knock-in mouse is shorter-lived, with VECs exhibiting obvious premature ageing characteristics associated with decreased basal autophagy. Autophagy activation suppresses the premature ageing of human and mouse VECs overexpressing CD44ICD, function conserved in the CD44 homologue clec-31 in
C. elegans
. Our work describes a mechanism coordinated by CD44 function bridging autophagy decline and ageing.
Mechanisms underlying the connection between autophagy decline and vascular endothelial cell (VEC) ageing remain unclear. Here, the authors identify a key role for CD44 in controlling autophagy and ageing in VECs, and this function is conserved in nematodes.
Journal Article
Low-pass genome sequencing–based detection of absence of heterozygosity: validation in clinical cytogenetics
by
Dong, Zirui
,
Yang, Zhenjun
,
Leung, Tak Yeung
in
Base Sequence
,
Biomedical and Life Sciences
,
Biomedicine
2021
Absence of heterozygosity (AOH) is a genetic characteristic known to cause human genetic disorders through autosomal recessive or imprinting mechanisms. However, the analysis of AOH via low-pass genome sequencing (GS) is not yet clinically available.
Low-pass GS (fourfold) with different types of libraries was performed on 17 clinical samples with previously ascertained AOH by chromosomal microarray analysis (CMA). In addition, AOH detection was performed with low-pass GS data in 1,639 cases that had both GS and high-probe density CMA data available from the 1000 Genomes Project. Cases with multiple AOHs (coefficient of inbreeding F ≥ 1/32) or terminal AOHs ≥5 Mb (suspected uniparental disomy [UPD]) were reported based on the guidelines of the American College of Medical Genetics and Genomics.
Low-pass GS revealed suspected segmental UPD and multiple AOHs (F ≥ 1/32) in nine and eight clinical cases, respectively, consistent with CMA. Among the 1,639 samples, low-pass GS not only consistently detected multiple AOHs (F ≥ 1/32) in 18 cases, but also reported 60 terminal AOHs in 44 cases including four mosaic AOHs at a level ranging from 50% to 75%.
Overall, our study demonstrates the feasibility of AOH analysis (≥5 Mb) with low-pass GS data and shows high concordance compared with CMA.
Journal Article
Drivers of improved PM2.5 air quality in China from 2013 to 2017
2019
From 2013 to 2017, with the implementation of the toughest-ever clean air policy in China, significant declines in fine particle (PM2.5) concentrations occurred nationwide. Here we estimate the drivers of the improved PM2.5 air quality and the associated health benefits in China from 2013 to 2017 based on a measure-specific integrated evaluation approach, which combines a bottom-up emission inventory, a chemical transport model, and epidemiological exposure-response functions. The estimated national population–weighted annual mean PM2.5 concentrations decreased from 61.8 (95%CI: 53.3–70.0) to 42.0 μg/m³ (95% CI: 35.7–48.6) in 5 y, with dominant contributions from anthropogenic emission abatements. Although interannual meteorological variations could significantly alter PM2.5 concentrations, the corresponding effects on the 5-y trends were relatively small. The measure-by-measure evaluation indicated that strengthening industrial emission standards (power plants and emission-intensive industrial sectors), upgrades on industrial boilers, phasing out outdated industrial capacities, and promoting clean fuels in the residential sector were major effective measures in reducing PM2.5 pollution and health burdens. These measures were estimated to contribute to 6.6- (95% CI: 5.9–7.1), 4.4- (95% CI: 3.8–4.9), 2.8- (95% CI: 2.5–3.0), and 2.2- (95% CI: 2.0–2.5) μg/m³ declines in the national PM2.5 concentration in 2017, respectively, and further reduced PM2.5-attributable excess deaths by 0.37 million (95% CI: 0.35–0.39), or 92% of the total avoided deaths. Our study confirms the effectiveness of China’s recent clean air actions, and the measure-by-measure evaluation provides insights into future clean air policy making in China and in other developing and polluting countries.
Journal Article
PUMA reduces FASN ubiquitination to promote lipid accumulation and tumor progression in human clear cell renal cell carcinoma
2025
While the p53 upregulated modulator of apoptosis (PUMA) is traditionally recognized for promoting cell apoptosis and enhancing chemotherapy efficacy in various cancers, its role in clear cell renal cell carcinoma (ccRCC) remains unclear due to ccRCC’s chemotherapy resistance. In this study, we discover a novel oncogenic role for PUMA in ccRCC, diverging from its known apoptotic function, through assessments of public datasets, clinical tissue samples, and cell line experiments. Abnormally high expression of PUMA positively correlates with clinical stages and poor prognosis. Notably, PUMA’s role in ccRCC appears to be independent of apoptosis. Instead, it facilitates tumor progression and lipid accumulation through mechanisms involving the key metabolic regulator, fatty acid synthase (FASN). Specifically, the N44-102 amino acid sequence of PUMA, distinct from the previously studied BH3 domain, is crucial for its interaction with FASN. As a mechanism, PUMA stabilizes FASN by binding to ubiquitin-specific protease 15 (USP15), reducing FASN ubiquitination and degradation, thereby forming the PUMA-USP15-FASN axis. These findings challenge the established view of PUMA’s role in cancer biology. Furthermore, PUMA knockdown significantly inhibits tumor growth and enhances the sensitivity of ccRCC tumors to metabolic inhibition. These results position PUMA as a novel metabolic regulator and a potential therapeutic target in ccRCC. The combined inhibition of PUMA and FASN further supports the therapeutic potential of targeting this metabolic axis.
Journal Article