Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
31 result(s) for "Shigemura, Noriatsu"
Sort by:
In silico analysis of sodium ion permeation mechanisms in transient receptor potential vanilloid 1
Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel activated by heat, acidity and chemical ligands. While molecular dynamics simulations have shed some light on the cation permeation processes of TRPV1, the mechanisms in the native-state structure under near-physiological conditions remain unestablished. Therefore, the present study conducted molecular dynamics simulations of near-full-length human TRPV1 under a membrane potential of − 100 mV. During permeation events, sodium ions transiently interacted with three binding sites within the channel pore and moved toward the intracellular side. Potential of mean force analyses revealed that sodium ions in the selectivity filter reduced the energy barrier at the hydrophobic gate, facilitating permeation through cooperative interactions. Additionally, mutation of N677, a pre-gate binding site residue, reduced permeation events. Interaction analysis demonstrated that this residue plays an important role in efficient permeation by mediating moderately strong interactions with sodium ions through their coordinated water molecules. These findings highlight the importance of sodium ion accommodation at the selectivity filter and its interaction with N677 for ion permeation through TRPV1. Our data provide new insights into the gating and conduction mechanisms of TRPV1 under near-physiological conditions.
Receptor mechanism producing a sweet taste from plant aroma compounds
Fruits and vegetables contain highly volatile hydrophobic small molecules responsible for their aroma, taste, and pungency. Empirically, we understand that these compounds can evoke a sweet taste; however, their specific interactions with sweet taste receptors are unclear. To address this issue, HEK293 cells expressing human and mouse sweet taste receptors TAS1R2/TAS1R3 were used to identify trans -2-hexenal (a novel sweetener) in human and cinnamyl alcohol (a sweetness inhibitor) in mice. The effects of these compounds on TAS1R2/TAS1R3 in humans and mice were evaluated alongside known hydrophobic sweet compounds, and the results showed that they elicited responses in human TAS1R2/TAS1R3 but not in mice. Conversely, some compounds inhibited the sweetness of sucralose both in vitro and in vivo. Response analysis using human and mouse chimeric TAS1R2 and point mutants of TAS1R2 using docking simulations indicated that these compounds bind to the transmembrane domain of TAS1R2 and that multiple amino acid residues are essential to generate a sweet taste. These results indicate that highly volatile hydrophobic compounds generate aroma and sweetness through a different mechanism than hydrophilic sweeteners, such as sucrose.
Expression of protocadherin-20 in mouse taste buds
Taste information is detected by taste cells and then transmitted to the brain through the taste nerve fibers. According to our previous data, there may be specific coding of taste quality between taste cells and nerve fibers. However, the molecular mechanisms underlying this coding specificity remain unclear. The purpose of this study was to identify candidate molecules that may regulate the specific coding. GeneChip analysis of mRNA isolated from the mice taste papillae and taste ganglia revealed that 14 members of the cadherin superfamily, which are important regulators of synapse formation and plasticity, were expressed in both tissues. Among them, protocadherin-20 (Pcdh20) was highly expressed in a subset of taste bud cells, and co-expressed with taste receptor type 1 member 3 (T1R3, a marker of sweet- or umami-sensitive taste cells) but not gustducin or carbonic anhydrase-4 (markers of bitter/sweet- and sour-sensitive taste cells, respectively) in circumvallate papillae. Furthermore, Pcdh20 expression in taste cells occurred later than T1R3 expression during the morphogenesis of taste papillae. Thus, Pcdh20 may be involved in taste quality-specific connections between differentiated taste cells and their partner neurons, thereby acting as a molecular tag for the coding of sweet and/or umami taste.
Expression of Renin-Angiotensin System Components in the Taste Organ of Mice
The systemic renin-angiotensin system (RAS) is an important regulator of body fluid and sodium homeostasis. Angiotensin II (AngII) is a key active product of the RAS. We previously revealed that circulating AngII suppresses amiloride-sensitive salt taste responses and enhances the responses to sweet compounds via the AngII type 1 receptor (AT1) expressed in taste cells. However, the molecular mechanisms underlying the modulation of taste function by AngII remain uncharacterized. Here we examined the expression of three RAS components, namely renin, angiotensinogen, and angiotensin-converting enzyme-1 (ACE1), in mouse taste tissues. We found that all three RAS components were present in the taste buds of fungiform and circumvallate papillae and co-expressed with αENaC (epithelial sodium channel α-subunit, a salt taste receptor) or T1R3 (taste receptor type 1 member 3, a sweet taste receptor component). Water-deprived mice exhibited significantly increased levels of renin expression in taste cells (p < 0.05). These results indicate the existence of a local RAS in the taste organ and suggest that taste function may be regulated by both locally-produced and circulating AngII. Such integrated modulation of peripheral taste sensitivity by AngII may play an important role in sodium/calorie homeostasis.
Ascl1-expressing cell differentiation in initially developed taste buds and taste organoids
Mammalian taste bud cells are composed of several distinct cell types and differentiated from surrounding tongue epithelial cells. However, the detailed mechanisms underlying their differentiation have yet to be elucidated. In the present study, we examined an Ascl1-expressing cell lineage using circumvallate papillae (CVP) of newborn mice and taste organoids (three-dimensional self-organized tissue cultures), which allow studying the differentiation of taste bud cells in fine detail ex vivo. Using lineage-tracing analysis, we observed that Ascl1 lineage cells expressed type II and III taste cell markers both CVP of newborn mice and taste organoids. However, the coexpression rate in type II cells was lower than that in type III cells. Furthermore, we found that the generation of the cells which express type II and III cell markers was suppressed in taste organoids lacking Ascl1-expressing cells. These findings suggest that Ascl1-expressing precursor cells can differentiate into both type III and a subset of type II taste cells.
Genetic and Molecular Basis of Individual Differences in Human Umami Taste Perception
Umami taste (corresponds to savory in English) is elicited by L-glutamate, typically as its Na salt (monosodium glutamate: MSG), and is one of five basic taste qualities that plays a key role in intake of amino acids. A particular property of umami is the synergistic potentiation of glutamate by purine nucleotide monophosphates (IMP, GMP). A heterodimer of a G protein coupled receptor, TAS1R1 and TAS1R3, is proposed to function as its receptor. However, little is known about genetic variation of TAS1R1 and TAS1R3 and its potential links with individual differences in umami sensitivity. Here we investigated the association between recognition thresholds for umami substances and genetic variations in human TAS1R1 and TAS1R3, and the functions of TAS1R1/TAS1R3 variants using a heterologous expression system. Our study demonstrated that the TAS1R1-372T creates a more sensitive umami receptor than -372A, while TAS1R3-757C creates a less sensitive one than -757R for MSG and MSG plus IMP, and showed a strong correlation between the recognition thresholds and in vitro dose-response relationships. These results in human studies support the propositions that a TAS1R1/TAS1R3 heterodimer acts as an umami receptor, and that genetic variation in this heterodimer directly affects umami taste sensitivity.
Sweet Taste Receptor Expressed in Pancreatic β-Cells Activates the Calcium and Cyclic AMP Signaling Systems and Stimulates Insulin Secretion
Sweet taste receptor is expressed in the taste buds and enteroendocrine cells acting as a sugar sensor. We investigated the expression and function of the sweet taste receptor in MIN6 cells and mouse islets. The expression of the sweet taste receptor was determined by RT-PCR and immunohistochemistry. Changes in cytoplasmic Ca(2+) ([Ca(2+)](c)) and cAMP ([cAMP](c)) were monitored in MIN6 cells using fura-2 and Epac1-camps. Activation of protein kinase C was monitored by measuring translocation of MARCKS-GFP. Insulin was measured by radioimmunoassay. mRNA for T1R2, T1R3, and gustducin was expressed in MIN6 cells. In these cells, artificial sweeteners such as sucralose, succharin, and acesulfame-K increased insulin secretion and augmented secretion induced by glucose. Sucralose increased biphasic increase in [Ca(2+)](c). The second sustained phase was blocked by removal of extracellular calcium and addition of nifedipine. An inhibitor of inositol(1, 4, 5)-trisphophate receptor, 2-aminoethoxydiphenyl borate, blocked both phases of [Ca(2+)](c) response. The effect of sucralose on [Ca(2+)](c) was inhibited by gurmarin, an inhibitor of the sweet taste receptor, but not affected by a G(q) inhibitor. Sucralose also induced sustained elevation of [cAMP](c), which was only partially inhibited by removal of extracellular calcium and nifedipine. Finally, mouse islets expressed T1R2 and T1R3, and artificial sweeteners stimulated insulin secretion. Sweet taste receptor is expressed in beta-cells, and activation of this receptor induces insulin secretion by Ca(2+) and cAMP-dependent mechanisms.
Bisphosphonate affects the behavioral responses to HCl by disrupting farnesyl diphosphate synthase in mouse taste bud and tongue epithelial cells
Little is known about the molecular mechanisms underlying drug-induced taste disorders, which can cause malnutrition and reduce quality of life. One of taste disorders is known adverse effects of bisphosphonates, which are administered as anti-osteoporotic drugs. Therefore, the present study evaluated the effects of risedronate (a bisphosphonate) on taste bud cells. Expression analyses revealed that farnesyl diphosphate synthase (FDPS, a key enzyme in the mevalonate pathway) was present in a subset of mouse taste bud and tongue epithelial cells, especially type III sour-sensitive taste cells. Other mevalonate pathway-associated molecules were also detected in mouse taste buds. Behavioral analyses revealed that mice administered risedronate exhibited a significantly enhanced aversion to HCl but not for other basic taste solutions, whereas the taste nerve responses were not affected by risedronate. Additionally, the taste buds of mice administered risedronate exhibited significantly lower mRNA expression of desmoglein-2 , an integral component of desmosomes. Taken together, these findings suggest that risedronate may interact directly with FDPS to inhibit the mevalonate pathway in taste bud and tongue epithelial cells, thereby affecting the expression of desmoglein-2 related with epithelial barrier function, which may lead to alterations in behavioral responses to HCl via somatosensory nerves.
Effects of insulin signaling on mouse taste cell proliferation
Expression of insulin and its receptor (IR) in rodent taste cells has been proposed, but exactly which types of taste cells express IR and the function of insulin signaling in taste organ have yet to be determined. In this study, we analyzed expression of IR mRNA and protein in mouse taste bud cells in vivo and explored its function ex vivo in organoids, using RT-PCR, immunohistochemistry, and quantitative PCR. In mouse taste tissue, IR was expressed broadly in taste buds, including in type II and III taste cells. With using 3-D taste bud organoids, we found insulin in the culture medium significantly decreased the number of taste cell and mRNA expression levels of many taste cell genes, including nucleoside triphosphate diphosphohydrolase-2 (NTPDase2), Tas1R3 (T1R3), gustducin, carbonic anhydrase 4 (CA4), glucose transporter-8 (GLUT8), and sodium-glucose cotransporter-1 (SGLT1) in a concentration-dependent manner. Rapamycin, an inhibitor of mechanistic target of rapamycin (mTOR) signaling, diminished insulin's effects and increase taste cell generation. Altogether, circulating insulin might be an important regulator of taste cell growth and/or proliferation via activation of the mTOR pathway.
Heat activation of TRPM5 underlies thermal sensitivity of sweet taste
Hot and sweet One of the most intriguing features of taste perception is its modulation by temperature. It is well known that warming enhances perceived sweetness and bitterness. In addition, around half of the human population experiences taste sensations just by changing the temperature of the tongue, a phenomenon known as ‘thermal taste’. A possible molecular explanation for these thermal effects on taste is now at hand. Activation of the receptors for sweet, bitter and umami taste in specialized cells of the tongue causes opening of the TRPM5 ion channel. This channel has now been found to be activated by heat. Direct heat activation of TRPM5 could lead to activation of taste receptors even in the absence of anything to taste. TRPM5, a cation channel of the TRP superfamily, is highly expressed in taste buds of the tongue, where it has a key role in the perception of sweet, umami and bitter tastes 1 , 2 . Activation of TRPM5 occurs downstream of the activation of G-protein-coupled taste receptors and is proposed to generate a depolarizing potential in the taste receptor cells 2 . Factors that modulate TRPM5 activity are therefore expected to influence taste. Here we show that TRPM5 is a highly temperature-sensitive, heat-activated channel: inward TRPM5 currents increase steeply at temperatures between 15 and 35 °C. TRPM4, a close homologue of TRPM5, shows similar temperature sensitivity. Heat activation is due to a temperature-dependent shift of the activation curve, in analogy to other thermosensitive TRP channels 3 . Moreover, we show that increasing temperature between 15 and 35 °C markedly enhances the gustatory nerve response to sweet compounds in wild-type but not in Trpm5 knockout mice. The strong temperature sensitivity of TRPM5 may underlie known effects of temperature on perceived taste in humans 4 , 5 , 6 , including enhanced sweetness perception at high temperatures and ‘thermal taste’, the phenomenon whereby heating or cooling of the tongue evoke sensations of taste in the absence of tastants 7 .