Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
126
result(s) for
"Shimada, Masakazu"
Sort by:
Prestalk-like positioning of de-differentiated cells in the social amoeba Dictyostelium discoideum
2024
The social amoeba
Dictyostelium discoideum
switches between solitary growth and social fruitification depending on nutrient availability. Under starvation, cells aggregate and form fruiting bodies consisting of spores and altruistic stalk cells. Once cells socially committed, they complete fruitification, even if a new source of nutrients becomes available. This social commitment is puzzling because it hinders individual cells from resuming solitary growth quickly. One idea posits that traits that facilitate premature de-commitment are hindered from being selected. We studied outcomes of the premature de-commitment through forced refeeding. Our results show that when refed cells interacted with non-refed cells, some of them became solitary, whereas a fraction was redirected to the altruistic stalk, regardless of their original fate. The refed cells exhibited reduced cohesiveness and were sorted out during morphogenesis. Our findings provide an insight into a division of labor of the social amoeba, in which less cohesive individuals become altruists.
Journal Article
Synchronized emergence under diatom sperm competition
2020
Appropriate timing of mating is crucial for the success of individuals. However, we know little about factors that explain variation in mating time in unicellular organisms. Unicellular eukaryotes often have facultative sexuality, that is, the less frequent sex is occasionally induced after long clonal reproduction. Thus, males originated from clonemates could be non-negligible mating rivals. Using a centric diatom whose clonal cells differentiate into either male or female, we analysed whether males (spermatogonium) compete or cooperate with each other. By analysing differentiation timing with hypotheses based on evolutionary game theory, we estimated that a substantial part of the variation in the mating timing of the diatom can be explained by results of optimization through interactions among selfish individuals rather than cooperation among clonemates. However, the competition is fiercer than expected owing to excessive synchronization, which was realized by adjustment of meiotic duration: cells completed mitotic division in the earlier mating phase took longer to enter into meiosis, whereas late-dividing cells entered into meiosis more quickly. Adjacent cells tended to synchronize, and model analyses suggest that cell–cell interaction can create a gap between the optimal and actual decisions. Our results provide insights into the evolution of cellular decision making and its restriction.
Journal Article
Examination of the proximodistal patellar position in small dogs in relation to anatomical features of the distal femur and medial patellar luxation
by
Shimada, Masakazu
,
Murakami, Sawako
,
Harada, Yasuji
in
Analysis
,
Biology and Life Sciences
,
Data analysis
2021
To determine the influence of anatomical features of the distal femur on the proximodistal patellar position and compare the proximodistal patellar position between dogs with and without medial patellar luxation (MPL). Retrospective case series (n = 71). Mediolateral-view radiographs of clinical cases of dogs weighing less than 15 kg were obtained. The stifle joint angle, patellar ligament length, patellar length, size of the femoral condyle, trochlear length, and trochlear angle were measured and included in multiple linear regression analyses to ascertain their effects on the proximodistal patellar position. Radiographs were divided into MPL and control groups. The effects of MPL on the proximodistal patellar position and morphological factors were also examined. The final model for the proximodistal patellar position revealed that the patella became distal as the ratio of the patellar ligament length to patellar length decreased, the trochlear angle relative to the femur increased, the trochlear length relative to the patellar length increased, or the trochlear length relative to the femoral condyle width decreased. The proximodistal patellar position in the MPL group was not significantly different from that in the control group despite the trend towards a distally positioned patella (p = 0.073). The MPL group showed a significantly shorter trochlea (p<0.001) and greater trochlear angle relative to the femur (p = 0.029) than the control group. The proximodistal patellar position depends on multiple factors, and its determination based on PLL/PL alone may not be appropriate. Dogs with MPL did not have a proximally positioned patella compared with dogs without MPL. Although hindlimbs with MPL had a shorter trochlea than those without patellar luxation, this difference did not appear to be sufficient to displace the patellar position proximally in small dogs, possibly compensated by increased trochlear angle relative to the femur.
Journal Article
Learning predator promotes coexistence of prey species in host-parasitoid systems
2012
Ecological theory suggests that frequency-dependent predation, in which more common prey types are disproportionately favored, promotes the coexistence of competing prey species. However, many of the earlier empirical studies that investigated the effect of frequency-dependent predation were short-term and ignored predator-prey dynamics and system persistence. Therefore, we used long-term observation of population dynamics to test how frequency-dependent prédation influences the dynamics and coexistence of competing prey species using insect laboratory populations. We established two-host-one-parasitoid populations with two bruchid beetles, Callosobruchus chinensis and C. maculatus, as the hosts and the pteromalid wasp Anisopteromalus calandrae as their common parasitoid. When the parasitoid was absent, C. chinensis was competitively excluded in ~20 wk. Introducing the parasitoid greatly enhanced the coexistence time to a maximum of 118 wk. In the replicates of long-lasting coexistence, the two host species C. maculatus and C. chinensis exhibited periodic antiphase oscillations. Behavioral experiments showed frequency-dependent predation of A. calandrae that was caused by learning. Females of A. calandrae learned host-related olfactory cues during oviposition and increased their preference for the common host species. Numerical simulations showed that parasitoid learning was the essential mechanism that promoted persistence in this host-parasitoid system. Our study is an empirical demonstration that frequency-dependent prédation has an important role in greatly enhancing the coexistence of prey populations, suggesting that predator learning affects predator-prey population dynamics and shapes biological communities in nature.
Journal Article
Cyclic dominance emerges from the evolution of two inter-linked cooperative behaviours in the social amoeba
2018
Evolution of cooperation has been one of the most important problems in sociobiology, and many researchers have revealed mechanisms that can facilitate the evolution of cooperation. However, most studies deal only with one cooperative behaviour, even though some organisms perform two or more cooperative behaviours. The social amoeba Dictyostelium discoideum performs two cooperative behaviours in starvation: fruiting body formation and macrocyst formation. Here, we constructed a model that couples these two behaviours, and we found that the two behaviours are maintained because of the emergence of cyclic dominance, although cooperation cannot evolve if only either of the two behaviours is performed. The common chemoattractant cyclic adenosine 3′,5′-monophosphate (cAMP) is used in both fruiting body formation and macrocyst formation, providing a biological context for this coupling. Cyclic dominance emerges regardless of the existence of mating types or spatial structure in the model. In addition, cooperation can re-emerge in the population even after it goes extinct. These results indicate that the two cooperative behaviours of the social amoeba are maintained because of the common chemical signal that underlies both fruiting body formation and macrocyst formation. We demonstrate the importance of coupling multiple games when the underlying behaviours are associated with one another.
Journal Article
Obligate symbiont involved in pest status of host insect
by
Fukatsu, Takema
,
Shimada, Masakazu
,
Kikuchi, Yoshitomo
in
Adaptation, Physiological
,
Animals
,
Biological Evolution
2007
The origin of specific insect genotypes that enable efficient use of agricultural plants is an important subject not only in applied fields like pest control and management but also in basic disciplines like evolutionary biology. Conventionally, it has been presupposed that such pest-related ecological traits are attributed to genes encoded in the insect genomes. Here, however, we report that pest status of an insect is principally determined by symbiont genotype rather than by insect genotype. A pest stinkbug species, Megacopta punctatissima, performed well on crop legumes, while a closely related non-pest species, Megacopta cribraria, suffered low egg hatch rate on the plants. When their obligate gut symbiotic bacteria were experimentally exchanged between the species, their performance on the crop legumes was, strikingly, completely reversed: the pest species suffered low egg hatch rate, whereas the non-pest species restored normal egg hatch rate and showed good performance. The low egg hatch rates were attributed to nymphal mortality before or upon hatching, which were associated with the symbiont from the non-pest stinkbug irrespective of the host insect species. Our finding sheds new light on the evolutionary origin of insect pests, potentially leading to novel approaches to pest control and management.
Journal Article
Strict Host-Symbiont Cospeciation and Reductive Genome Evolution in Insect Gut Bacteria
2006
Host-symbiont cospeciation and reductive genome evolution have been identified in obligate endocellular insect symbionts, but no such example has been identified from extracellular ones. Here we first report such a case in stinkbugs of the family Plataspidae, wherein a specific gut bacterium is vertically transmitted via \"symbiont capsule.\" In all of the plataspid species, females produced symbiont capsules upon oviposition and their gut exhibited specialized traits for capsule production. Phylogenetic analysis showed that the plataspid symbionts constituted a distinct group in the gamma-Proteobacteria, whose sister group was the aphid obligate endocellular symbionts Buchnera. Removal of the symbionts resulted in retarded growth, mortality, and sterility of the insects. The host phylogeny perfectly agreed with the symbiont phylogeny, indicating strict host-symbiont cospeciation despite the extracellular association. The symbionts exhibited AT-biased nucleotide composition, accelerated molecular evolution, and reduced genome size, as has been observed in obligate endocellular insect symbionts. These findings suggest that not the endocellular conditions themselves but the population genetic attributes of the vertically transmitted symbionts are probably responsible for the peculiar genetic traits of these insect symbionts. We proposed the designation \"Candidatus Ishikawaella capsulata\" for the plataspid symbionts. The plataspid stinkbugs, wherein the host-symbiont associations can be easily manipulated, provide a novel system that enables experimental approaches to previously untouched aspects of the insect-microbe mutualism. Furthermore, comparative analyses of the sister groups, the endocellular Buchnera and the extracellular Ishikawaella, would lead to insights into how the different symbiotic lifestyles have affected their genomic evolution.
Journal Article
Effects of long-term and high-dose administration of glucocorticoids on the cranial cruciate ligament in healthy beagle dogs
2022
This study aimed to determine the effects of long-term and high-dose administration of glucocorticoids (GCs) on the histological and mechanical properties of the cranial cruciate ligament (CrCL) in healthy beagle dogs. A synthetic corticosteroid at 2 mg/kg every 12 h was administered for 84 days in nine dogs (18 CrCLs) (GC group). Twenty CrCLs from 12 healthy male beagles were used as the normal control (control group). CrCLs were histologically examined (n = 12 in the GC group and n = 14 in the control group) using hematoxylin-eosin, Alcian-Blue, Elastica-Eosin stains, and immunohistological staining of type 1 collagen and elastin. An additional 12 CrCLs were mechanically tested (n = 6 in the GC and n = 6 in the control groups) to determine failure pattern, maximum tensile strength, maximum stress, elastic modulus, and stress and strain at the transition point. The histological examination revealed a significant increase in interfascicular area and fibrillar disorientation at the tibial attachment in both groups. The ratios of mucopolysaccharide-positive area and positive areas of elastic fibers were significantly higher in the control group than in the GC group. The biomechanical examination demonstrated significantly lower stress at the transition point in the GC group than in the control group. The present study results indicate that high-dose corticosteroids may affect metabolism, such as mucopolysaccharides and elastic fibers production, although the effect on type 1 collagen production is small. These changes of the extracellular matrix had a small effect on the strength of the ligament. This study suggested that the ligamentous changes associated with GC are different from the degeneration observed in spontaneous canine CrCL disease.
Journal Article
Effects of long-term plate fixation with different fixation modes on the radial cortical bone in dogs
by
Muroi, Norihiro
,
Shimada, Masakazu
,
Ochi, Hiroki
in
Animal euthanasia
,
Biology and Life Sciences
,
Biomedical materials
2021
The aim of this study was to examine the effect of long-term locking plate fixation on the cortical bone of the canine radius. Locking compression plates were fixed to the left and right radius in dogs (n = 3). The left radius was fixed with a locking head screw (Locking Plate group, LP). The locking compression plate was compressed periosteally in the right radius using a cortex screw (Compression Plate group, CP). Radial bones from dogs that were euthanized for other purposes were collected as an untreated control group (Control group). After euthanasia at 36 weeks following plate fixation, radial bones were evaluated for bone mineral density and underwent histological analysis. Bone metabolic markers were analyzed by quantitative polymerase chain reaction (qPCR). Statistical analyses were performed for comparisons between groups. The LP group showed no significant difference in bone mineral density after plate fixation, whereas the CP group showed significantly lower bone mineral density. Histological analysis indicated that the number of osteoclasts and rate of empty lacunae increased significantly in the CP group relative to the Control and LP groups. qPCR analysis indicated increased expression of inflammatory cytokines, such as tumor necrosis factor-alpha , interleukin-6 , and tumor necrosis factor ligand superfamily member 11 in the CP group, whereas Runt-related transcription factor 2 , an osteoblast marker, was similar in all groups. The expression of hypoxia-inducible factor-1α in the CP group was also increased relative to that in the Control and LP groups. Thus, locking plate fixation is a biologically superior fixation method that does not cause implant-induced osteoporosis in the bone in the long term.
Journal Article
Effects of long-term and high-dose administration of glucocorticoids on the cranial cruciate ligament in healthy beagle dogs
by
Shimada, Masakazu
,
Hayashi, Kei
,
Murakami, Sawako
in
Beagles (Dogs)
,
Corticosteroids
,
Cruciate ligaments
2022
This study aimed to determine the effects of long-term and high-dose administration of glucocorticoids (GCs) on the histological and mechanical properties of the cranial cruciate ligament (CrCL) in healthy beagle dogs. A synthetic corticosteroid at 2 mg/kg every 12 h was administered for 84 days in nine dogs (18 CrCLs) (GC group). Twenty CrCLs from 12 healthy male beagles were used as the normal control (control group). CrCLs were histologically examined (n = 12 in the GC group and n = 14 in the control group) using hematoxylin-eosin, Alcian-Blue, Elastica-Eosin stains, and immunohistological staining of type 1 collagen and elastin. An additional 12 CrCLs were mechanically tested (n = 6 in the GC and n = 6 in the control groups) to determine failure pattern, maximum tensile strength, maximum stress, elastic modulus, and stress and strain at the transition point. The histological examination revealed a significant increase in interfascicular area and fibrillar disorientation at the tibial attachment in both groups. The ratios of mucopolysaccharide-positive area and positive areas of elastic fibers were significantly higher in the control group than in the GC group. The biomechanical examination demonstrated significantly lower stress at the transition point in the GC group than in the control group. The present study results indicate that high-dose corticosteroids may affect metabolism, such as mucopolysaccharides and elastic fibers production, although the effect on type 1 collagen production is small. These changes of the extracellular matrix had a small effect on the strength of the ligament. This study suggested that the ligamentous changes associated with GC are different from the degeneration observed in spontaneous canine CrCL disease.
Journal Article