Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
83
result(s) for
"Shimura, Daisuke"
Sort by:
Protective mitochondrial fission induced by stress-responsive protein GJA1-20k
2021
The Connexin43 gap junction gene GJA1 has one coding exon, but its mRNA undergoes internal translation to generate N-terminal truncated isoforms of Connexin43 with the predominant isoform being only 20 kDa in size (GJA1-20k). Endogenous GJA1-20k protein is not membrane bound and has been found to increase in response to ischemic stress, localize to mitochondria, and mimic ischemic preconditioning protection in the heart. However, it is not known how GJA1-20k benefits mitochondria to provide this protection. Here, using human cells and mice, we identify that GJA1-20k polymerizes actin around mitochondria which induces focal constriction sites. Mitochondrial fission events occur within about 45 s of GJA1-20k recruitment of actin. Interestingly, GJA1-20k mediated fission is independent of canonical Dynamin-Related Protein 1 (DRP1). We find that GJA1-20k-induced smaller mitochondria have decreased reactive oxygen species (ROS) generation and, in hearts, provide potent protection against ischemia-reperfusion injury. The results indicate that stress responsive internally translated GJA1-20k stabilizes polymerized actin filaments to stimulate non-canonical mitochondrial fission which limits ischemic-reperfusion induced myocardial infarction.
Journal Article
Auxiliary trafficking subunit GJA1-20k protects connexin-43 from degradation and limits ventricular arrhythmias
2020
Connexin-43 (Cx43) gap junctions provide intercellular coupling, which ensures rapid action potential propagation and synchronized heart contraction. Alterations in Cx43 localization and reductions in gap junction coupling occur in failing hearts, contributing to ventricular arrhythmias and sudden cardiac death. Recent reports have found that an internally translated Cx43 isoform, GJA1-20k, is an auxiliary subunit for the trafficking of Cx43 in heterologous expression systems. Here, we have created a mouse model by using CRISPR technology to mutate a single internal translation initiation site in Cx43 (M213L mutation), which generates full-length Cx43, but not GJA1-20k. We found that GJA1M213L/M213L mice had severely abnormal electrocardiograms despite preserved contractile function, reduced total Cx43, and reduced gap junctions, and they died suddenly at 2 to 4 weeks of age. Heterozygous GJA1M213L/WT mice survived to adulthood with increased ventricular ectopy. Biochemical experiments indicated that cytoplasmic Cx43 had a half-life that was 50% shorter than membrane-associated Cx43. Without GJA1-20k, poorly trafficked Cx43 was degraded. The data support that GJA1-20k, an endogenous entity translated independently of Cx43, is critical for Cx43 gap junction trafficking, maintenance of Cx43 protein, and normal electrical function of the mammalian heart.
Journal Article
Low-loss silicon wire waveguides for optical integrated circuits
by
Horikawa, Tsuyoshi
,
Shimura, Daisuke
,
Mogami, Tohru
in
Biomaterials
,
Characterization and Evaluation of Materials
,
Materials Engineering
2016
Low-propagation-loss silicon wire waveguides are key components of optical integrated circuits. In this paper, we clarified, through assessment of the relationship between waveguide loss and fabrication technology that high-resolution lithography and an adjusted lithography process window are important for low-loss waveguides. The silicon wire waveguides fabricated by high-resolution lithography technology using ArF immersion lithography process showed world-record low propagation losses of 0.40 dB/cm for the C-band and 1.28 dB/cm for the O-band. Analysis with Barwicz and Haus's theory indicated that sidewall scattering is the main cause of propagation loss even in such low-loss waveguides.
Journal Article
Structure of bacterial cellulose synthase subunit D octamer with four inner passageways
by
Munekata, Masanobu
,
Tanaka, Isao
,
Hu, Song-Qing
in
Acetobacter xylinum
,
Bacteria
,
Biochemistry
2010
The cellulose synthesizing terminal complex consisting of subunits A, B, C, and D in Acetobacter xylinum spans the outer and inner cell membranes to synthesize and extrude glucan chains, which are assembled into subelementary fibrils and further into a ribbon. We determined the structures of subunit D (AxCeSD/AxBcsD) with both N- and C-terminal His₆ tags, and in complex with cellopentaose. The structure of AxCeSD shows an exquisite cylinder shape (height: ∼65 Å, outer diameter: ∼90 Å, and inner diameter: ∼25 Å) with a right-hand twisted dimer interface on the cylinder wall, formed by octamer as a functional unit. All N termini of the octamer are positioned inside the AxCeSD cylinder and create four passageways. The location of cellopentaoses in the complex structure suggests that four glucan chains are extruded individually through their own passageway along the dimer interface in a twisted manner. The complex structure also shows that the N-terminal loop, especially residue Lys6, seems to be important for cellulose production, as confirmed by in vivo assay using mutant cells with axcesD gene disruption and N-terminus truncation. Taking all results together, a model of the bacterial terminal complex is discussed.
Journal Article
Impairment of Excitation-Contraction Coupling in Right Ventricular Hypertrophied Muscle with Fibrosis Induced by Pulmonary Artery Banding
by
Yokota, Shunsuke
,
Kusakari, Yoichiro
,
Miyasaka, Genki
in
Aequorin - metabolism
,
Animal models
,
Animals
2017
Interstitial myocardial fibrosis is one of the factors responsible for dysfunction of the heart. However, how interstitial fibrosis affects cardiac function and excitation-contraction coupling (E-C coupling) has not yet been clarified. We developed an animal model of right ventricular (RV) hypertrophy with fibrosis by pulmonary artery (PA) banding in rats. Two, four, and six weeks after the PA-banding operation, the tension and intracellular Ca2+ concentration of RV papillary muscles were simultaneously measured (n = 33). The PA-banding rats were clearly divided into two groups by the presence or absence of apparent interstitial fibrosis in the papillary muscles: F+ or F- group, respectively. The papillary muscle diameter and size of myocytes were almost identical between F+ and F-, although the RV free wall weight was heavier in F+ than in F-. F+ papillary muscles exhibited higher stiffness, lower active tension, and lower Ca2+ responsiveness compared with Sham and F- papillary muscles. In addition, we found that the time to peak Ca2+ had the highest correlation coefficient to percent of fibrosis among other parameters, such as RV weight and active tension of papillary muscles. The phosphorylation level of troponin I in F+ was significantly higher than that in Sham and F-, which supports the idea of lower Ca2+ responsiveness in F+. We also found that connexin 43 in F+ was sparse and disorganized in the intercalated disk area where interstitial fibrosis strongly developed. In the present study, the RV papillary muscles obtained from the PA-banding rats enabled us to directly investigate the relationship between fibrosis and cardiac dysfunction, the impairment of E-C coupling in particular. Our results suggest that interstitial fibrosis worsens cardiac function due to 1) the decrease in Ca2+ responsiveness and 2) the asynchronous activation of each cardiac myocyte in the fibrotic preparation due to sparse cell-to-cell communication.
Journal Article
Low Cardiac Output Leads Hepatic Fibrosis in Right Heart Failure Model Rats
by
Kusakari, Yoichiro
,
Ida, Hiroyuki
,
Fujiwara, Masako
in
Animals
,
Banding
,
Biology and Life Sciences
2016
Hepatic fibrosis progresses with right heart failure, and becomes cardiac cirrhosis in a severe case. Although its causal factor still remains unclear. Here we evaluated the progression of hepatic fibrosis using a pulmonary artery banding (PAB)-induced right heart failure model and investigated whether cardiac output (CO) is responsible for the progression of hepatic fibrosis.
Five-week-old Sprague-Dawley rats divided into the PAB and sham-operated control groups. After 4 weeks from operation, we measured CO by echocardiography, and hepatic fibrosis ratio by pathological examination using a color analyzer. In the PAB group, CO was significantly lower by 48% than that in the control group (78.2±27.6 and 150.1±31.2 ml/min, P<0.01). Hepatic fibrosis ratio and serum hyaluronic acid, an index of hepatic fibrosis, were significantly increased in the PAB group than those in the control group (7.8±1.7 and 1.0±0.2%, P<0.01, 76.2±27.5 and 32.7±7.5 ng/ml, P<0.01). Notably, the degree of hepatic fibrosis significantly correlated a decrease in CO. Immunohistological analysis revealed that hepatic stellate cells were markedly activated in hypoxic areas, and HIF-1α positive hepatic cells were increased in the PAB group. Furthermore, by real-time PCR analyses, transcripts of profibrotic and fibrotic factors (TGF-β1, CTGF, procollargen I, procollargen III, MMP 2, MMP 9, TIMP 1, TIMP 2) were significantly increased in the PAB group. In addition, western blot analyses revealed that the protein level of HIF-1α was significantly increased in the PAB group than that in the control group (2.31±0.84 and 1.0±0.18 arbitrary units, P<0.05).
Our study demonstrated that low CO and tissue hypoxia were responsible for hepatic fibrosis in right failure heart model rats.
Journal Article
Mirror-based silicon-photonics vertical I/O with coupling efficiency enhancement for standard single-mode fiber
A broadband, low polarization-dependent silicon-photonics vertical coupling was demonstrated based on an integrated curved mirror. Owing to its lens function, coupling efficiency between a silicon inverse taper waveguide and a standard single-mode fiber was enhanced by 1.4 and 3.4 dB for TE and TM polarization.
Conference Proceeding
Polarization rotator Bragg grating assisted wavelength selective polarization alignment
by
Okayama, Hideaki
,
Shimura, Daisuke
,
Takahashi, Hiroyuki
in
Alignment
,
Bragg gratings
,
Coupling coefficients
2021
A device performing both the polarization-alignment and the wavelength selection is demonstrated by fabricated device. Waveguides incorporating Bragg gratings for polarization rotation and mode conversion having different widths are placed near to each other. For the polarization rotation, experimental results show that the field strength ratio in the two waveguides defines the diffraction coupling coefficient and excitation strength of unwanted modes. The excitation of unwanted mode is reduced, when a large radius short curved waveguide is used for input/output waveguides as shown in the experiment. Polarization aligned wavelength peaks were observed at the backward drop port in the experiment.
Protective mitochondrial fission induced by stress responsive protein GJA1-20k
2021
The Connexin43 gap junction gene GJA1 has one coding exon, but its mRNA undergoes internal translation to generate N-terminal truncated isoforms of Connexin43 with the predominant isoform being only 20 kDa in size (GJA1-20k). Endogenous GJA1-20k protein is not membrane bound, and has been found to increase in response to ischemic stress, localize to mitochondria, and mimic ischemic preconditioning protection in the heart. However, it is not known how GJA1-20k benefits mitochondria to provide this protection. Here, we identify that GJA1-20k polymerizes actin around mitochondria which induces focal constriction sites. Mitochondrial fission events occur within about 45 seconds of GJA1-20k recruitment of actin. Interestingly, GJA1-20k mediated fission is independent of canonical Dynamin Related Protein 1 (DRP1). We find that GJA1-20k induced smaller mitochondria have decreased reactive oxygen species (ROS) generation and, in hearts, provide potent protection against ischemia-reperfusion injury. The results indicate that stress responsive internally translated GJA1-20k stabilizes polymerized actin filaments to stimulate non-canonical mitochondrial fission which limits ischemic-reperfusion induced myocardial infarction.
GJA1-20k, an internally translated isoform of Connexin 43, is an actin capping protein
2022
Previously, we identified that GJA1-20k, an internally translated isoform of Connexin 43, mediates an actin-dependent protective form of mitochondrial fission (Shimura, Nuebel et al. 2021). We found that when GJA1-20k is present, bands of actin surround mitochondria at locations enriched with GJA1-20k, inducing mitochondrial fission which generates less oxygen free radicals, protecting hearts subjected to ischemia-reperfusion injury. Here, we report that GJA1-20k is a direct actin binding protein and thereby identify the mechanism by which GJA1-20k is able to recruit and stabilize actin filaments around the mitochondria. Surprisingly, GJA1-20k functions as a canonical actin capping protein, producing both truncated actin puncta and stabilized actin filaments. GJA1-20k contains an RPEL-like actin binding motif, and we confirm with both computational modeling and biochemistry, that this domain is crucial for actin capping. The actin capping functionality of GJA1-20k adds GJA1-20k to the family of proteins that regulate actin dynamics. As a stress responsive protein, GJA1-20k can help explain cytoskeletal dependent responses to cellular stress, from delivery of channels to affecting mitochondrial size and function. Competing Interest Statement The authors have declared no competing interest.