Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
29 result(s) for "Shimura, Hanako"
Sort by:
Construction of a de novo assembly pipeline using multiple transcriptome data sets from Cypripedium macranthos (Orchidaceae)
The family Orchidaceae comprises the most species of any monocotyledonous family and has interesting characteristics such as seed germination induced by mycorrhizal fungi and flower morphology that co-adapted with pollinators. In orchid species, genomes have been decoded for only a few horticultural species, and there is little genetic information available. Generally, for species lacking sequenced genomes, gene sequences are predicted by de novo assembly of transcriptome data. Here, we devised a de novo assembly pipeline for transcriptome data from the wild orchid Cypripedium (lady slipper orchid) in Japan by mixing multiple data sets and integrating assemblies to create a more complete and less redundant contig set. Among the assemblies generated by combining various assemblers, Trinity and IDBA-Tran yielded good assembly with higher mapping rates and percentages of BLAST hit contigs and complete BUSCO. Using this contig set as a reference, we analyzed differential gene expression between protocorms grown aseptically or with mycorrhizal fungi to detect gene expressions required for mycorrhizal interaction. A pipeline proposed in this study can construct a highly reliable contig set with little redundancy even when multiple transcriptome data are mixed, and can provide a reference that is adaptable to DEG analysis and other downstream analysis in RNA-seq.
Coat protein of partitiviruses isolated from mycorrhizal fungi functions as an RNA silencing suppressor in plants and fungi
Orchid seeds depend on colonization by orchid mycorrhizal (OM) fungi for their germination; therefore, the orchids and OM fungi have long maintained a close relationship (e.g., formation of the hyphal mass structure, peloton) during their evolution. In the present study, we isolated new partitiviruses from OM fungi; partitivirus were separately found in different subcultures from the same fungi. Partitiviruses have been believed to lack an RNA silencing suppressor (RSS), which is generally associated with viral pathogenicity, because most partitiviruses isolated so far are latent in both plants and fungi. However, we found that the coat protein (CP) of our partitiviruses indeed had RSS activity, which differed among the virus isolates from OM fungi; one CP showed RSS activity in both plants and fungi, while another CP showed no activity. The family Partitiviridae include viruses isolated from plants and fungi, and it has been suggested that these viruses may occasionally be transmitted between plant and fungal hosts. Given that there are several reports showing that viruses can adapt to nonhost using strong RSS, we here discussed the idea that partitiviruses may be better able to migrate between the orchid and fungus probably through the pelotons formed in the orchid cells, if host RNA silencing is suppressed by partitivirus RSS.
Transcriptomic and protein–protein interaction network analyses of the molecular mechanisms underlying the mycorrhizal interaction in Cypripedium macranthos var. rebunense
Orchid mycorrhizal (OM) symbiosis plays an essential role in orchid seed germination and development, but its molecular mechanisms remain largely unexplored. To comprehensively analyze gene expression associated with early fungal colonization, transcriptome analysis of var. rebunense was performed using mycorrhizal tissues prepared by inoculating seedling plants with a fungus that exhibited different mycorrhizal interaction properties among subcultures. Colonization with the mycorrhizal fungus induced an increased expression of orchid genes encoding enzymes involved in cell wall synthesis, degradation, and modification, as well as those encoding transporters of sugars, amino acids, nucleic acids, and other nitrogen-containing compounds. Enrichment analysis focusing on genes associated with protein-protein interactions (PPI) suggested a potential role of lectin domain-containing receptor-like kinases (LecRLKs) in the recognition of fungal colonization and the induction of cell wall-modifying enzymes and nutrient transporters required for mycorrhizal formation. Kinase genes such as MAPKKK and serine/threonine protein kinase were upregulated in tissues exhibiting continued peloton formation, whereas these genes exhibited no changes in tissues showing no peloton formation four weeks after inoculation. These results suggest that the continuous phosphorylation signaling cascade plays a crucial role in the regulatory pathway for maintaining mycorrhizal interactions between and its mycorrhizal fungus.
Importin/exportin-mediated nucleocytoplasmic shuttling of cucumber mosaic virus 2b protein is required for 2b’s efficient suppression of RNA silencing
The 2b protein (2b) of cucumber mosaic virus (CMV), an RNA-silencing suppressor (RSS), is a major pathogenicity determinant of CMV. 2b is localized in the nucleus and cytoplasm, and its nuclear import is determined by two nuclear localization signals (NLSs); a carrier protein (importin [IMPα]) is predicted to be involved in 2b’s nuclear transport. Cytoplasmic 2bs play a role in suppression of RNA silencing by binding to small RNAs and AGO proteins. A putative nuclear export signal (NES) motif was also found in 2b, but has not been proved to function. Here, we identified a leucine-rich motif in 2b’s C-terminal half as an NES. We then showed that NES-deficient 2b accumulated abundantly in the nucleus and lost its RSS activity, suggesting that 2b exported from the nucleus can play a role as an RSS. Although two serine residues (S40 and S42) were previously found to be phosphorylated, we also found that an additional phosphorylation site (S28) alone can affect 2b’s nuclear localization and RSS activity. Alanine substitution at S28 impaired the IMPα-mediated nuclear/nucleolar localization of 2b, and RSS activity was even stronger compared to wild-type 2b. In a subcellular fractionation assay, phosphorylated 2bs were detected in the nucleus, and comparison of the accumulation levels of nuclear phospho-2b between wild-type 2b and the NES mutant showed a greatly reduced level of the phosphorylated NES mutant in the nucleus, suggesting that 2bs are dephosphorylated in the nucleus and may be translocated to the cytoplasm in a nonphosphorylated form. These results suggest that 2b manipulates its nucleocytoplasmic transport as if it tracks down its targets, small RNAs and AGOs, in the RNA silencing pathway. We infer that 2b’s efficient RSS activity is maintained by a balance of phosphorylation and dephosphorylation, which are coupled to importin/exportin-mediated shuttling between the nucleus and cytoplasm.
A Viral Satellite RNA Induces Yellow Symptoms on Tobacco by Targeting a Gene Involved in Chlorophyll Biosynthesis using the RNA Silencing Machinery
Symptoms on virus-infected plants are often very specific to the given virus. The molecular mechanisms involved in viral symptom induction have been extensively studied, but are still poorly understood. Cucumber mosaic virus (CMV) Y satellite RNA (Y-sat) is a non-coding subviral RNA and modifies the typical symptom induced by CMV in specific hosts; Y-sat causes a bright yellow mosaic on its natural host Nicotiana tabacum. The Y-sat-induced yellow mosaic failed to develop in the infected Arabidopsis and tomato plants suggesting a very specific interaction between Y-sat and its host. In this study, we revealed that Y-sat produces specific short interfering RNAs (siRNAs), which interfere with a host gene, thus inducing the specific symptom. We found that the mRNA of tobacco magnesium protoporphyrin chelatase subunit I (ChlI, the key gene involved in chlorophyll synthesis) had a 22-nt sequence that was complementary to the Y-sat sequence, including four G-U pairs, and that the Y-sat-derived siRNAs in the virus-infected plant downregulate the mRNA of ChlI by targeting the complementary sequence. ChlI mRNA was also downregulated in the transgenic lines that express Y-sat inverted repeats. Strikingly, modifying the Y-sat sequence in order to restore the 22-nt complementarity to Arabidopsis and tomato ChlI mRNA resulted in yellowing symptoms in Y-sat-infected Arabidopsis and tomato, respectively. In 5'-RACE experiments, the ChlI transcript was cleaved at the expected middle position of the 22-nt complementary sequence. In GFP sensor experiments using agroinfiltration, we further demonstrated that Y-sat specifically targeted the sensor mRNA containing the 22-nt complementary sequence of ChlI. Our findings provide direct evidence that the identified siRNAs derived from viral satellite RNA directly modulate the viral disease symptom by RNA silencing-based regulation of a host gene.
Virus-Induced Necrosis Is a Consequence of Direct Protein-Protein Interaction between a Viral RNA-Silencing Suppressor and a Host Catalase
Many plant host factors are known to interact with viral proteins during pathogenesis, but how a plant virus induces a specific disease symptom still needs further research. A lily strain of Cucumber mosaic virus (CMV-HL) can induce discrete necrotic spots on infected Arabidopsis (Arabidopsis thaliana) plants; other CMV strains can induce similar spots, but they are not as distinct as those induced by CMV-HL. The CMV 2b protein (2b), a known RNA-silencing suppressor, is involved in viral movement and symptom induction. Using in situ proximity ligation assay immunostaining and the protoplast assays, we report here that CMV 2b interacts directly with Catalase3 (CAT3) in infected tissues, a key enzyme in the breakdown of toxic hydrogen peroxide. Interestingly, CAT3, normally localized in the cytoplasm (glyoxysome), was recruited to the nucleus by an interaction between 2b and CAT3. Although overexpression of CAT3 in transgenic plants decreased the accumulation of CMV and delayed viral symptom development to some extent, 2b seems to neutralize the cellular catalase contributing to the host defense response, thus favoring viral infection. Our results thus provide evidence that, in addition to altering the type of symptom by disturbing microRNA pathways, 2b can directly bind to a host factor that is important in scavenging cellular hydrogen peroxide and thus interfere specifically with that host factor, leading to the induction of a specific necrosis.
Tobacco calmodulin-like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors
RNA silencing (RNAi) induced by virus-derived double-stranded RNA (dsRNA), which is in a sense regarded as a pathogen-associated molecular pattern (PAMP) of viruses, is a general plant defense mechanism. To counteract this defense, plant viruses express RNA silencing suppressors (RSSs), many of which bind to dsRNA and attenuate RNAi. We showed that the tobacco calmodulin-like protein, rgs-CaM, counterattacked viral RSSs by binding to their dsRNA-binding domains and sequestering them from inhibiting RNAi. Autophagy-like protein degradation seemed to operate to degrade RSSs with the sacrifice of rgs-CaM. These RSSs could thus be regarded as secondary viral PAMPs. This study uncovered a unique defense system in which an rgs-CaM–mediated countermeasure against viral RSSs enhanced host antiviral RNAi in tobacco.
Advancing toward commercial application of RNA silencing-based strategies to protect plants from viral diseases
Recent reports have described spraying double-stranded RNAs (dsRNAs) onto plants to efficiently target and protect against pathogens and pests through the cellular RNA silencing pathway. Here we review RNA silencing-based strategies for transgenic plants that have been tested for nearly 20 years and have promise for commercial development to protect plants from viral diseases. The prospects of exogenously supplied dsRNAs (or even short-interfering RNAs [siRNAs]) as antiviral agents will be discussed. Although hurdles still need to be overcome before they can be used commercially, further technological development should soon enable the use of dsRNAs in the field to control viral diseases.
Allexiviruses may have acquired inserted sequences between the CP and CRP genes to change the translation reinitiation strategy of CRP
Allexiviruses are economically important garlic viruses that are involved in garlic mosaic diseases. In this study, we characterized the allexivirus cysteine-rich protein (CRP) gene located just downstream of the coat protein (CP) gene in the viral genome. We determined the nucleotide sequences of the CP and CRP genes from numerous allexivirus isolates and performed a phylogenetic analysis. According to the resulting phylogenetic tree, we found that allexiviruses were clearly divided into two major groups (group I and group II) based on the sequences of the CP and CRP genes. In addition, the allexiviruses in group II had distinct sequences just before the CRP gene, while group I isolates did not. The inserted sequence between the CP and CRP genes was partially complementary to garlic 18S rRNA. Using a potato virus X vector, we showed that the CRPs affected viral accumulation and symptom induction in Nicotiana benthamiana , suggesting that the allexivirus CRP is a pathogenicity determinant. We assume that the inserted sequences before the CRP gene may have been generated during viral evolution to alter the termination-reinitiation mechanism for coupled translation of CP and CRP.
Transcriptional silencing of 35S driven-transgene is differentially determined depending on promoter methylation heterogeneity at specific cytosines in both plus- and minus-sense strands
Background De novo DNA methylation triggered by short interfering RNAs is called RNA-directed DNA methylation (RdDM). Transcriptional gene silencing (TGS) through RdDM can be induced using a viral vector. We have previously induced RdDM on the 35S promoter in the green fluorescent protein (GFP)-expressing Nicotiana benthamiana line 16c using the cucumber mosaic virus vector. The GFP fluorescence phenotype segregated into two types, “red” and “orange” in the first self-fertilized (S 1 ) progeny plants by the difference in degree of recovery from TGS on GFP expression. In the second self-fertilized generation (S 2 plants), the phenotypes again segregated. Explaining what generates the red and orange types could answer a very important question in epigenetics: How is the robustness of TGS maintained after RdDM induction? Results In bisulfite sequencing analyses, we found a significant difference in the overall promoter hypermethylation pattern between the red and orange types in S 1 plants but little difference in S 2 plants. Therefore, we assumed that methylation at some specific cytosine residues might be important in determining the two phenotypes. To find the factor that discriminates stable, robust TGS from the unstable TGS with incomplete inheritance, we analyzed the direct effect of methylated cytosine residues on TGS. Because it has not yet been demonstrated that DNA methylation at a few specific cytosine residues on known sequence elements can indeed determine TGS robustness, we newly developed a method by which we can directly evaluate the effect of specific methylation on promoter activity. In this assay, we found that the effects of the specific cytosine methylation on TGS differed between the plus- and minus-strands. Conclusions We found two distinct phenotypes, the stable and unstable TGS in the progenies of virus-induced TGS plants. Our bisulfite sequencing analyses suggested that methylation at some specific cytosine residues in the 35S promoter played a role in determining whether stable or unstable TGSs are induced. Using the developed method, we inferred that DNA methylation heterogeneity in and between the plus- and minus-strands can differentially determine TGS.