Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
40
result(s) for
"Shitov, Y."
Sort by:
Off-Axis Characterisation of the CERN T10 Beam for low Momentum Proton Measurements with a High Pressure Gas Time Projection Chamber
2020
We present studies of proton fluxes in the T10 beamline at CERN. A prototype high pressure gas time projection chamber (TPC) was exposed to the beam of protons and other particles, using the 0.8 GeV/c momentum setting in T10, in order to make cross section measurements of low energy protons in argon. To explore the energy region comparable to hadrons produced by GeV-scale neutrino interactions at oscillation experiments, i.e., near 0.1 GeV of kinetic energy, methods of moderating the T10 beam were employed: the dual technique of moderating the beam with acrylic blocks and measuring scattered protons off the beam axis was used to decrease the kinetic energy of incident protons, as well as change the proton/minimum ionising particle (MIP) composition of the incident flux. Measurements of the beam properties were made using time of flight systems upstream and downstream of the TPC. The kinetic energy of protons reaching the TPC was successfully changed from ∼0.3 GeV without moderator blocks to less than 0.1 GeV with four moderator blocks (40 cm path length). The flux of both protons and MIPs off the beam axis was increased. The ratio of protons to MIPs vary as a function of the off-axis angle allowing for possible optimisation of the detector to select the type of required particles. Simulation informed by the time of flight measurements show that with four moderator blocks placed in the beamline, (5.6 ± 0.1) protons with energies below 0.1 GeV per spill traversed the active TPC region. Measurements of the beam composition and energy are presented.
Journal Article
Probing new physics models of neutrinoless double beta decay with SuperNEMO
2010
The possibility to probe new physics scenarios of light Majorana neutrino exchange and right-handed currents at the planned next generation neutrinoless double
β
decay experiment SuperNEMO is discussed. Its ability to study different isotopes and track the outgoing electrons provides the means to discriminate different underlying mechanisms for the neutrinoless double
β
decay by measuring the decay half-life and the electron angular and energy distributions.
Journal Article
Polyolefin-Based Nanocomposites
by
Osipchik, V.S.
,
Shitov, D.Yu
,
Budnitskii, Yu.M.
in
Composite materials
,
Flammability
,
Heat resistance
2016
An examination is made of the physicomechanical and processing properties of nanocomposites based on low-density polyethylene and polypropylene. The advantages of introducing organobentonite in the form of concentrate are shown, and also the influence of the processing parameters on the properties of the composites obtained.
Journal Article
Certain Features of Chemical Reactions of Terminal Functional Groups of Macromolecules
2016
The role of terminal functional groups in the chemical interaction of macromolecules is discussed. An examination is made of the most well-known types of chemical reaction with the participation of terminal groups of macromolecules and the conditions under which they are conducted, and certain practical examples are given.
Journal Article
Composite Materials based on Polypropylene with Carbon Nanofillers
2014
A promising direction in polymer science and in materials science in recent years has been the development of the principles behind the production of polymer nanocomposites, which are the latest type of functional material and can be used in the most varied spheres of application of plastics. In the modern world, different types of polymer composite based on nanofillers are elbowing out traditional materials and conquering new markets. Here, Shitov et al investigate the processing properties of a composite material based on modified filled polypropylene. Production technology for polymer nanocomposites is not in place, and development of technology is directed towards simplifying, and making less expensive, methods for producing composite materials containing nanoparticles.
Journal Article
Off-Axis Characterisation of the CERN T10 Beam for low Momentum Proton Measurements with a High Pressure Gas Time Projection Chamber
We present studies of proton fluxes in the T10 beamline at CERN. A prototype high pressure gas time projection chamber (TPC) was exposed to the beam of protons and other particles, using the 0.8 GeV/c momentum setting in T10, in order to make cross section measurements of low energy protons in argon. To explore the energy region comparable to hadrons produced by GeV-scale neutrino interactions at oscillation experiments, i.e., near 0.1 GeV of kinetic energy, methods of moderating the T10 beam were employed: the dual technique of moderating the beam with acrylic blocks and measuring scattered protons off the beam axis was used to decrease the kinetic energy of incident protons, as well as change the proton/minimum ionising particle (MIP) composition of the incident flux. Measurements of the beam properties were made using time of flight systems upstream and downstream of the TPC. The kinetic energy of protons reaching the TPC was successfully changed from \\(\\sim0.3\\) GeV without moderator blocks to less than 0.1 GeV with four moderator blocks (40 cm path length). The flux of both protons and MIPs off the beam axis was increased. The ratio of protons to MIPs vary as a function of the off-axis angle allowing for possible optimisation of the detector to select the type of required particles. Simulation informed by the time of flight measurements show that with four moderator blocks placed in the beamline, (\\(5.6 \\pm 0.1\\)) protons with energies below 0.1 GeV per spill traversed the active TPC region. Measurements of the beam composition and energy are presented.
Applied Antineutrino Physics 2018 Proceedings
2019
Proceedings for the 14th installment of Applied Antineutrino Physics (AAP) workshop series.
TITUS: the Tokai Intermediate Tank for the Unoscillated Spectrum
2016
The TITUS, Tokai Intermediate Tank for Unoscillated Spectrum, detector, is a proposed Gd-doped Water Cherenkov tank with a magnetised muon range detector downstream. It is located at J-PARC at about 2 km from the neutrino target and it is proposed as a potential near detector for the Hyper-Kamiokande experiment. Assuming a beam power of 1.3 MW and 27.05 x 10^{21} protons-on-target the sensitivity to CP and mixing parameters achieved by Hyper-Kamiokande with TITUS as a near detector is presented. Also, the potential of the detector for cross sections and Standard Model parameter determination, supernova neutrino and dark matter are shown.
Measurement of double-$\\beta$ decay of $^{150}$Nd to the 0$^+_1$ excited state of $^{150}$Sm in NEMO-3
2023
The NEMO-3 results for the double-$\\beta $ decay of $^{150}$Nd to the 0$^+_1$ and 2$^+_1$ excited states of $^{150}$Sm are reported. The data recorded during 5.25 year with 36.6 g of the isotope $^{150}$Nd are used in the analysis. The signal of the $2\\nu \\beta \\beta $ transition to the 0$^+_1$ excited state is detected with a statistical significance exceeding 5$\\sigma $. The half-life is measured to be $T_{1/2}^{2\\nu \\beta \\beta }(0^+_1) = \\left[ 1.11 ^{+0.19}_{-0.14} \\,\\left( \\hbox {stat}\\right) ^{+0.17}_{-0.15}\\,\\left( \\hbox {syst}\\right) \\right] \\times 10^{20}$ year, which is the most precise value that has been measured to date. 90% confidence-level limits are set for the other decay modes. For the $2\\nu \\beta \\beta $ decay to the 2$^+_1$ level the limit is $T^{2\\nu \\beta \\beta }_{1/2}(2^+_1) > 2.42 \\times 10^{20}~\\hbox {year}$. The limits on the $0\\nu \\beta \\beta $ decay to the 0$^+_1$ and 2$^+_1$ levels of $^{150}$Sm are significantly improved to $T_{1/2}^{0\\nu \\beta \\beta }(0^+_1) > 1.36 \\times 10^{22}~\\hbox {year}$ and $T_{1/2}^{0\\nu \\beta \\beta }(2^+_1) > 1.26 \\times 10^{22}~\\hbox {year}$.
Journal Article
Measurement of the double- $$\\varvec{\\beta }$$decay of$$\\varvec{^{150}}$$ Nd to the 0 $$\\varvec{^+_1}$$excited state of$$\\varvec{^{150}}$$ Sm in NEMO-3
2023
The NEMO-3 results for the double-$$\\beta $$β decay of$$^{150}$$150 Nd to the 0$$^+_1$$1 + and 2$$^+_1$$1 + excited states of$$^{150}$$150 Sm are reported. The data recorded during 5.25 year with 36.6 g of the isotope$$^{150}$$150 Nd are used in the analysis. The signal of the$$2\\nu \\beta \\beta $$2 ν β β transition to the 0$$^+_1$$1 + excited state is detected with a statistical significance exceeding 5$$\\sigma $$σ . The half-life is measured to be$$T_{1/2}^{2\\nu \\beta \\beta }(0^+_1) = \\left[ 1.11 ^{+0.19}_{-0.14} \\,\\left( \\hbox {stat}\\right) ^{+0.17}_{-0.15}\\,\\left( \\hbox {syst}\\right) \\right] \\times 10^{20}$$T 1 / 2 2 ν β β ( 0 1 + ) = 1 . 11 - 0.14 + 0.19 stat - 0.15 + 0.17 syst × 10 20 year, which is the most precise value that has been measured to date. 90% confidence-level limits are set for the other decay modes. For the$$2\\nu \\beta \\beta $$2 ν β β decay to the 2$$^+_1$$1 + level the limit is$$T^{2\\nu \\beta \\beta }_{1/2}(2^+_1) > 2.42 \\times 10^{20}~\\hbox {year}$$T 1 / 2 2 ν β β ( 2 1 + ) > 2.42 × 10 20 year . The limits on the$$0\\nu \\beta \\beta $$0 ν β β decay to the 0$$^+_1$$1 + and 2$$^+_1$$1 + levels of$$^{150}$$150 Sm are significantly improved to$$T_{1/2}^{0\\nu \\beta \\beta }(0^+_1) > 1.36 \\times 10^{22}~\\hbox {year}$$T 1 / 2 0 ν β β ( 0 1 + ) > 1.36 × 10 22 year and$$T_{1/2}^{0\\nu \\beta \\beta }(2^+_1) > 1.26 \\times 10^{22}~\\hbox {year}$$T 1 / 2 0 ν β β ( 2 1 + ) > 1.26 × 10 22 year .
Journal Article