Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
144
result(s) for
"Shogo Takeda"
Sort by:
β-Sitosterol 3-O-D-glucoside increases ceramide levels in the stratum corneum via the up-regulated expression of ceramide synthase-3 and glucosylceramide synthase in a reconstructed human epidermal keratinization model
by
Imokawa, Genji
,
Takeda, Shogo
,
Terazawa, Shuko
in
Biology and Life Sciences
,
Medicine and Health Sciences
,
Research and Analysis Methods
2021
β-Sitosterol 3-
O
-
d
-glucoside (BSG) is known to act as an agonist by binding to estrogen receptors, and estrogen has been reported to enhance the activity of β-glucocerebrosidase, an epidermal ceramide metabolizing enzyme. In this study, we determined whether BSG up-regulates ceramide levels in the stratum corneum (SC) of a reconstructed human epidermal keratinization (RHEK) model. Treatment with BSG significantly increased the total ceramide content by 1.2-fold compared to that in the control in the SC of the RHEK model, accompanied by a significant increase of the ceramide species, Cer[EOS] by 2.1-fold compared to that in the control. RT-PCR analysis demonstrated that BSG significantly up-regulated the mRNA expression levels of serine palmitoyltransferase (SPT)2, ceramide synthase (CerS)3, glucosylceramide synthase (GCS) and acid sphingomyelinase by 1.41–1.89, 1.35–1.44, 1.19 and 2.06-fold, respectively, compared to that in the control in the RHEK model. Meanwhile, BSG significantly down-regulated the mRNA expression levels of sphingomyelin synthase (SMS)2 by 0.87–0.89-fold. RT-PCR analysis also demonstrated that BSG significantly up-regulated the mRNA expression levels of CerS3 and GCS by 1.19–1.55 and 1.20-fold, respectively, but not of SPT2 and significantly down-regulated that of SMS2 by 0.74-fold in HaCaT keratinocytes. Western blotting analysis revealed that BSG significantly increased the protein expression levels of CerS3 and GCS by 1.78 and 1.28–1.32-fold, respectively, compared to that in the control in HaCaT cells. These findings indicate that BSG stimulates ceramide synthesis via the up-regulated expression levels of CerS3 and GCS in the glucosylceramide pathway, which results in a significantly increased level of total ceramides in the SC accompanied by significantly increased levels of acylceramide species such as Cer[EOS].
Journal Article
Strawberry seed extract and its major component, tiliroside, promote ceramide synthesis in the stratum corneum of human epidermal equivalents
by
Imokawa, Genji
,
Takeda, Shogo
,
Takarada, Toru
in
Atopic dermatitis
,
Berries
,
Biology and Life Sciences
2018
The activation of peroxisomeproliferator-activated receptor (PPAR) α can stimulate the expression of ceramide-related enzymes, and a major component of strawberry seed extract (SSE) tiliroside enhances the expression of PPARα. We determined whether SSE and tiliroside may stimulate ceramide synthesis in the stratum corneum (SC) of the human epidermal equivalents (HEEs) culture model. Treatment with SSE at 1.0 and 3.0 μg/mL elicited a significant increase in the total ceramide content in the SC, which was accompanied by a significant increase in almost all ceramide species except for ceramide [EOS] and [AP]. Treatment with tiliroside at 0.3 μg/mL slightly accentuated the total ceramide content in the SC together with a significant increase in the ceramide [NS, NDS] content. Messenger RNA analysis demonstrated that SSE at 1 or 3 μg/mL significantly stimulated the gene expression of serine palmitoyltransferase (SPT) 2, ceramide synthase (CerS) 3, glucosylceramide synthase (GCS), and β-glucocerebrosidase (GBA) but not of SPT1, sphingomyelin synthase (SMS) 1/2 and acid sphingomyelinase (ASM). In contrast, tiliroside elicited significant increases in the gene expression levels of GCS and GBA only at 0.3 and/or 0.1 μg/mL. Western blotting analysis revealed that both SSE and tiliroside enhanced the protein expression levels of GCS and GBA but not of SPT2 at 1 or 3 and 0.1 or 0.3 μg/mL, respectively. These findings suggested that both SSE and tiliroside have a distinct potential to stimulate the level of ceramide [NS, NDS] in the SC by enhancing the expression of GCS and GBA. The higher stimulatory effect with SSE than tiliroside on SC ceramide synthesis correlates with the significant increase observed with SSE but not tiliroside in the gene expression levels of SPT2 and CerS3. Therefore, it is anticipated that SSE is effective in improving skin barrier function and moisture retention in several ceramide-deficit skin conditions, including surfactant-induced roughened skin, xerosis, and atopic dermatitis.
Journal Article
The Anti-Adiposity Mechanisms of Ampelopsin and Vine Tea Extract in High Fat Diet and Alcohol-Induced Fatty Liver Mouse Models
2022
Ampelopsis grossedentata (AG) is an ancient medicinal plant that is mainly distributed and used in southwest China. It exerts therapeutic effects, such as antioxidant, anti-diabetic, and anti-inflammatory activities, reductions in blood pressure and cholesterol and hepatoprotective effects. Researchers in China recently reported the anti-obesity effects of AG extract in diet-induced obese mice and rats. To verify these findings, we herein investigated the effects of AG extract and its principal compound, ampelopsin, in high-fat diet (HFD)- and alcohol diet-fed mice, olive oil-loaded mice, and differentiated 3T3-L1 cells. The results obtained showed that AG extract and ampelopsin significantly suppressed increases in the weights of body, livers and abdominal fat and also up-regulated the expression of carnitine palmitoyltransferase 1A in HFD-fed mice. In olive oil-loaded mice, AG extract and ampelopsin significantly attenuated increases in serum triglyceride (TG) levels. In differentiated 3T3-L1 cells, AG extract and ampelopsin promoted TG decomposition, which appeared to be attributed to the expression of hormone-sensitive lipase. In alcohol diet-fed mice, AG extract and ampelopsin reduced serum levels of ethanol, glutamic oxaloacetic transaminase (GOT), and glutamic pyruvic transaminase (GPT) and liver TG. An examination of metabolic enzyme expression patterns revealed that AG extract and ampelopsin mainly enhanced the expression of aldehyde dehydrogenase and suppressed that of cytochrome P450, family 2, subfamily e1. In conclusion, AG extract and ampelopsin suppressed diet-induced intestinal fat accumulation and reduced the risk of fatty liver associated with HFD and alcohol consumption.
Journal Article
Comparative Study on Epidermal Moisturizing Effects and Hydration Mechanisms of Rice-Derived Glucosylceramides and Ceramides
2022
Ceramide (Cer) plays an important role in skin barrier functions in the stratum corneum (SC). The ingestion of food-derived glucosylceramides (GlcCer) attenuates transepidermal water loss (TEWL). However, the moisturizing effects of single molecules of GlcCer and Cer remain unclear. Therefore, we herein purified 13 GlcCer and 6 Cer, including elasticamide, which has the same structure as human Cer[AP], from rice and compared their epidermal moisturizing effects in a reconstructed human epidermal keratinization model. The results obtained showed that 10 µM of 5 GlcCer[d18:2] with a 4E,8Z sphingadienine and C18 to C26 fatty acids and 10 µg/mL of 3 Cer with C23 or C24 fatty acids significantly reduced TEWL. The moisturizing effects of these GlcCer were dependent on the length of fatty acids. Furthermore, 10 µg/mL of elasticamide increased the SC Cer contents by promoting the expression of GlcCer synthase. Electron microscopic observations revealed that 1 µM of GlcCer[d18:2(4E,8Z)/26:0] increased the number of keratohyalin granules and desmosomes. Immunostaining and Western blotting indicated that 1 µM of GlcCer[d18:2(4E,8Z)/26:0] up-regulated the expression of filaggrin and corneodesmosin, which contribute to epidermal hydration. This comparative study on epidermal moisturization by GlcCer and Cer isolated from rice revealed differences in their hydration mechanisms.
Journal Article
Effect of probiotics on immune cells in young Japanese Black calves responding to vaccination against bacterial respiratory diseases
by
Takeda, Shogo
,
Kosenda, Keigo
,
Ohtsuka, Hiromichi
in
bacterial respiratory disease
,
CD3 antigen
,
CD4 antigen
2025
The vaccination against bacterial respiratory diseases in calves has been generally recognised as useful for the prevention of infections. Inducing an immunological response after vaccination is important for obtaining protection from infections. The aim of the study was to investigate the effects of probiotics on the immunological response to vaccination against bacterial respiratory diseases in young Japanese Black calves.
Twenty-four Japanese Black calves were randomly divided into two groups (12 calves for the research group and 12 calves for the control group) on the seventh day of life (dol). The research group received 30 g per day of live bacteria mix consisting of
and
until the 63
dol. The control group did not receive the bacteria mix. All calves were vaccinated against bacterial respiratory diseases twice, at 21 and 42 dol. Blood samples were obtained from all calves at 7, 21, 42 (prior to the second vaccination), 45, 49 and 63 dol for determination of antibody titres, leukocyte numbers and cytokine genes.
Lymphocyte counts, T cell (CD3
, CD4
and CD8
cell) counts and relative expressions of cytokine genes (interleukin (IL)-4 and IL-17A) at 45, 49 and 63 dol were significantly higher in the research group compared than in the control group.
The addition of probiotics to young Japanese Black calves' feed promoted an immunological reaction to vaccination against bacterial respiratory diseases.
Journal Article
Lycoperoside H, a Tomato Seed Saponin, Improves Epidermal Dehydration by Increasing Ceramide in the Stratum Corneum and Steroidal Anti-Inflammatory Effect
2021
Tomatoes are widely consumed, however, studies on tomato seeds are limited. In this study, we isolated 11 compounds including saponins and flavonol glycosides from tomato seeds and evaluated their effects on epidermal hydration. Among the isolated compounds, tomato seed saponins (10 µM) significantly increased the mRNA expression of proteins related to epidermal hydration, including filaggrin, involucrin, and enzymes for ceramide synthesis, by 1.32- to 1.91-fold compared with the control in HaCaT cells. Tomato seed saponins (10 µM) also decreased transepidermal water loss by 7 to 13 g/m2·h in the reconstructed human epidermal keratinization (RHEK) models. Quantitative analysis of the ceramide content in the stratum corneum (SC) revealed that lycoperoside H (1–10 µM) is a promising candidate to stimulate ceramide synthesis via the upregulation of ceramide synthase-3, glucosylceramide synthase, and β-glucocerebrosidase, which led to an increase in the total SC ceramides (approximately 1.5-fold) in concert with ceramide (NP) (approximately 2-fold) in the RHEK models. Evaluation of the anti-inflammatory and anti-allergic effects of lycoperoside H demonstrated that lycoperoside H is suggested to act as a partial agonist of the glucocorticoid receptor and exhibits anti-inflammatory effects (10 mg/kg in animal test). These findings indicate that lycoperoside H can improve epidermal dehydration and suppress inflammation by increasing SC ceramide and steroidal anti-inflammatory activity.
Journal Article
Hypoglycemic effects of mountain caviar extract and inhibitory mechanism of saponins, including momordin Ic, on glucose absorption
by
Takeda, Shogo
,
Morikawa, Toshio
,
Wu, Jianbo
in
Absorption
,
Animals
,
Biomedical and Life Sciences
2024
Mountain caviar is a fruit of
Kochia scoparia
that contains momordin Ic as a major saponin constituent. Its extract (MCE) has been shown to suppress blood glucose elevations in the human oral glucose tolerance test (OGTT) as well as increases in blood glucose in OGTT, gastric emptying (GE), and glucose incorporation in the small intestine in rats. However, the effects of MCE and momordin Ic on glucose absorption in mice and these action mechanisms have not been examined for more than 2 decades. Therefore, we herein investigated the effects of MCE, its saponin fraction, and momordin Ic on blood glucose elevations in mice. Mouse blood glucose elevation tests were performed on carbohydrate-loaded mice. The mountain caviar saponin fraction significantly delayed blood glucose elevations in glucose-, sucrose-, and soluble starch-loaded mice. In glucose-loaded mice, the saponin fraction, MCE, and momordin Ic significantly suppressed rapid glucose elevations after glucose loading, but not sucrose loading. A mouse GE study was performed by loading with glucose and phenolphthalein solution. Momordin Ic and MCE strongly suppressed mouse GE. Intestinal glucose absorption was evaluated by the incorporation of 2-deoxyglucose (2-DG) into Caco-2 cell layers and mouse duodenum wall vesicles. The results obtained showed that momordin Ic inhibited the incorporation of 2-DG into Caco-2 cells and mouse duodenum vesicles. Collectively, these results suggest that MCE, particularly the principal saponin, momordin Ic, preferably suppressed glucose-induced blood glucose elevations and delayed carbohydrate-induced glucose elevations in mice. The underlying mechanism was found to involve the suppression of GE and intestinal glucose absorption.
Graphical Abstract
Journal Article
NLRP3 inflammasome has a protective effect against oxazolone-induced colitis: a possible role in ulcerative colitis
2016
The inflammasomes induce maturation of pro-interleukin-1β (IL-1β) and pro-IL-18. We investigated roles of the NLRP3 inflammasome in the pathogenesis of ulcerative colitis (UC). After induction of oxazolone-induced colitis, a mouse UC model, colonic tissues were assayed for inflammatory mediators. Histological studies were performed on inflamed colonic tissue from mice and UC patients. Histological severity of murine colitis peaked on day 1, accompanied by an increase in the expression of Th2 cytokines including IL-4 and IL-13. Oxazolone treatment stimulated maturation of pro-caspase-1 and pro-IL-1β, while it reduced IL-18 expression. Either exogenous IL-1β or IL-18 ameliorated the colitis with or without reduction in Th2 cytokine expression, respectively. Induction of colitis decreased MUC2 expression, which was reversed by administration of IL-18, but not IL-1β. Compared to wild-type mice, NLRP3
−/−
mice exhibited higher sensitivity to oxazolone treatment with enhancement of Th2 cytokine expression and reduction of mature IL-1β and IL-18 production; this phenotype was rescued by exogenous IL-1β or IL-18. Immunofluorescent studies revealed positive correlation of NLRP3 expression with disease severity in UC patients, and localization of the inflammasome-associated molecules in macrophages. The NLRP3 inflammasome-derived IL-1β and IL-18 may play a protective role against UC through different mechanisms.
Journal Article
Colchicine prevents NSAID-induced small intestinal injury by inhibiting activation of the NLRP3 inflammasome
by
Kazunari Tominaga
,
Tetsuo Arakawa
,
Akira Higashimori
in
692/308/1426
,
692/4020/1503/1501
,
82/51
2016
The inflammasome is a large, multiprotein complex that consists of a nucleotide-binding oligomerization domain-like receptor (NLR), an apoptosis-associated speck-like protein containing a caspase recruitment domain, and pro-caspase-1. Activation of the inflammasome results in cleavage of pro-caspase-1 into cleaved caspase-1, which promotes the processing of pro-interleukin (IL)-1β into mature IL-1β. We investigated the effects of colchicine on non-steroidal anti-inflammatory drug (NSAID)-induced small intestinal injury and activation of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome. Colchicine treatment inhibited indomethacin-induced small intestinal injury by 86% (1 mg/kg) and 94% (3 mg/kg) as indicated by the lesion index 24 h after indomethacin administration. Colchicine inhibited the protein expression of cleaved caspase-1 and mature IL-1β, without affecting the mRNA expression of NLRP3 and IL-1β. Although treatment with recombinant IL-1β (0.1 μg/kg) did not change the severity of small intestinal damage, the preventive effects of colchicine were abolished by supplementation with the same dose of recombinant IL-1β. Indomethacin-induced small intestinal damage was reduced by 77%, as determined by the lesion index in
NLRP3
−/−
mice, and colchicine treatment failed to inhibit small intestinal damage in
NLRP3
−/−
mice. These results demonstrate that colchicine prevents NSAID-induced small intestinal injury by inhibiting activation of the NLRP3 inflammasome.
Journal Article
Epidermal and Blood Vessel Barrier Functions of Glucosylceramides and Digalactosyldiacylglycerols Isolated from Yellow Strawberry Guava
by
Shogo Takeda
,
Akari Yoneda
,
Yoshiaki Manse
in
Biological activity
,
Biological effects
,
Blood vessels
2024
Strawberry guava is the fruit of Psidium littorale, which grows in tropical regions. Few studies have examined the hydrophobic compounds and biological activities of this fruit. Therefore, we purified lipophilic compounds of strawberry guava and examined their effects on epidermal and blood vessel barrier functions as well as their anti-melanogenic activity. Lipophilic compounds were isolated by silica gel column chromatography followed by reversed-phase HPLC with MeOH from an EtOH extract of the fruit. Isolated compounds were identified by comparing NMR and MS spectra with those of reference values. The effects of these compounds on epidermal barrier function were evaluated by measuring transepidermal water loss (TEWL) using reconstructed human epidermal keratinocytes (RHEKs). Blood vessel barrier function was examined using dye permeability through human umbilical vein endothelial cell (HUVEC) layers. Anti-melanogenic activity was assessed by theophylline-induced melanogenesis in B16 melanoma cells. We isolated six glucosylceramides (GlcCers) and three digalactosyldiacylglycerols (DGDGs). Only GlcCer[t18:1(8Z)/23:0] significantly lowered TEWL in RHEKs, while GlcCer[t18:1(8Z)/24:0] induced a slight reduction. Regarding the permeability of the HUVEC layer, GlcCer[d18:2(4E,8Z)/16:0] and DGDG (1,2-dilinolenoyl-3-digalactosylglycerol) significantly suppressed dye permeability and this effect was accompanied by the expression of VE-cadherin, which facilitates cell-to-cell adhesion. GlcCers and DGDGs did not exhibit anti-melanogenic activity. Therefore, strawberry guava containing specific GlcCers and DGDGs may promote epidermal and blood vessel barrier functions.
Journal Article