Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
23
result(s) for
"Shu Lih Oh"
Sort by:
A deep learning approach for Parkinson’s disease diagnosis from EEG signals
by
Oh, Shu Lih
,
Hagiwara, Yuki
,
Yuvaraj, Rajamanickam
in
Artificial Intelligence
,
Artificial neural networks
,
Automation
2020
An automated detection system for Parkinson’s disease (PD) employing the convolutional neural network (CNN) is proposed in this study. PD is characterized by the gradual degradation of motor function in the brain. Since it is related to the brain abnormality, electroencephalogram (EEG) signals are usually considered for the early diagnosis. In this work, we have used the EEG signals of twenty PD and
twenty
normal subjects in this study. A
thirteen
-layer CNN architecture which can overcome the need for the conventional feature representation stages is implemented. The developed model has achieved a promising performance of 88.25% accuracy, 84.71% sensitivity, and 91.77% specificity. The developed classification model is ready to be used on large population before installation of clinical usage.
Journal Article
Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals
by
Oh, Shu Lih
,
Hagiwara, Yuki
,
Fujita, Hamido
in
Artificial neural networks
,
Automation
,
Change detection
2019
Congestive heart failure (CHF) is a chronic heart condition associated with debilitating symptoms that result in increased mortality, morbidity, healthcare expenditure and decreased quality of life. Electrocardiogram (ECG) is a noninvasive and simple diagnostic method that may demonstrate detectable changes in CHF. However, manual diagnosis of ECG signal is often subject to errors due to the small amplitude and duration of the ECG signals, and in isolation, is neither sensitive nor specific for CHF diagnosis. An automated computer-aided system may enhance the diagnostic objectivity and reliability of ECG signals in CHF. We present an 11-layer deep convolutional neural network (CNN) model for CHF diagnosis herein. This proposed CNN model requires minimum pre-processing of ECG signals, and no engineered features or classification are required. Four different sets of data (A, B, C and D) were used to train and test the proposed CNN model. Out of the four sets, Set B attained the highest accuracy of 98.97%, specificity and sensitivity of 99.01% and 98.87% respectively. The proposed CNN model can be put into practice and serve as a diagnostic aid for cardiologists by providing more objective and faster interpretation of ECG signals.
Journal Article
Deep Convolutional Neural Network Model for Automated Diagnosis of Schizophrenia Using EEG Signals
by
Oh, Shu Lih
,
Acharya, U Rajendra
,
Yuvaraj, Rajamanickam
in
Accuracy
,
automated detection system
,
Classification
2019
A computerized detection system for the diagnosis of Schizophrenia (SZ) using a convolutional neural system is described in this study. Schizophrenia is an anomaly in the brain characterized by behavioral symptoms such as hallucinations and disorganized speech. Electroencephalograms (EEG) indicate brain disorders and are prominently used to study brain diseases. We collected EEG signals from 14 healthy subjects and 14 SZ patients and developed an eleven-layered convolutional neural network (CNN) model to analyze the signals. Conventional machine learning techniques are often laborious and subject to intra-observer variability. Deep learning algorithms that have the ability to automatically extract significant features and classify them are thus employed in this study. Features are extracted automatically at the convolution stage, with the most significant features extracted at the max-pooling stage, and the fully connected layer is utilized to classify the signals. The proposed model generated classification accuracies of 98.07% and 81.26% for non-subject based testing and subject based testing, respectively. The developed model can likely aid clinicians as a diagnostic tool to detect early stages of SZ.
Journal Article
Automated Detection of Sleep Stages Using Deep Learning Techniques: A Systematic Review of the Last Decade (2010–2020)
by
Jahmunah Vicnesh
,
U. Rajendra Acharya
,
Chui Ping Ooi
in
Artificial intelligence
,
Automation
,
Biology (General)
2020
Sleep is vital for one’s general well-being, but it is often neglected, which has led to an increase in sleep disorders worldwide. Indicators of sleep disorders, such as sleep interruptions, extreme daytime drowsiness, or snoring, can be detected with sleep analysis. However, sleep analysis relies on visuals conducted by experts, and is susceptible to inter- and intra-observer variabilities. One way to overcome these limitations is to support experts with a programmed diagnostic tool (PDT) based on artificial intelligence for timely detection of sleep disturbances. Artificial intelligence technology, such as deep learning (DL), ensures that data are fully utilized with low to no information loss during training. This paper provides a comprehensive review of 36 studies, published between March 2013 and August 2020, which employed DL models to analyze overnight polysomnogram (PSG) recordings for the classification of sleep stages. Our analysis shows that more than half of the studies employed convolutional neural networks (CNNs) on electroencephalography (EEG) recordings for sleep stage classification and achieved high performance. Our study also underscores that CNN models, particularly one-dimensional CNN models, are advantageous in yielding higher accuracies for classification. More importantly, we noticed that EEG alone is not sufficient to achieve robust classification results. Future automated detection systems should consider other PSG recordings, such as electroencephalogram (EEG), electrooculogram (EOG), and electromyogram (EMG) signals, along with input from human experts, to achieve the required sleep stage classification robustness. Hence, for DL methods to be fully realized as a practical PDT for sleep stage scoring in clinical applications, inclusion of other PSG recordings, besides EEG recordings, is necessary. In this respect, our report includes methods published in the last decade, underscoring the use of DL models with other PSG recordings, for scoring of sleep stages.
Journal Article
Accurate detection of myocardial infarction using non linear features with ECG signals
by
Ciaccio, Edward J.
,
Koh, Joel E. W.
,
Kadry, Seifedine
in
Abnormalities
,
Algorithms
,
Artificial Intelligence
2021
Interrupted blood flow to regions of the heart causes damage to heart muscles, resulting in myocardial infarction (MI). MI is a major source of death worldwide. Accurate and timely detection of MI facilitates initiation of emergency revascularization in acute MI and early secondary prevention therapy in established MI. In both acute and ambulatory settings, the electrocardiogram (ECG) is a standard data type for diagnosis. ECG abnormalities associated with MI can be subtle, and may escape detection upon clinical reading. Experience and training are required to visually extract salient information present in the ECG signals. This process of characterization is manually intensive, and prone to intra-and inter-observer-variability. The clinical problem can be posed as one of diagnostic classification of MI versus no MI on the ECG, which is amenable to computational solutions. Computer Aided Diagnosis (CAD) systems are designed to be automated, rapid, efficient, and ultimately cost-effective systems that can be employed to detect ECG abnormalities associated with MI. In this work, ECGs from 200 subjects were analyzed (52 normal and 148 MI). The proposed methodology involves pre-processing of signals and subsequent detection of R peaks using the Pan-Tompkins algorithm. Nonlinear features were extracted. The extracted features were ranked based on Student’s
t
-test and input to k-Nearest Neighbor (KNN), Support Vector Machine (SVM), Probabilistic Neural Network (PNN), and Decision Tree (DT) classifiers for distinguishing normal versus MI classes. This method yielded the highest accuracy 97.96%, sensitivity 98.89%, and specificity 93.80% using the SVM classifier.
Journal Article
Application of empirical mode decomposition (EMD) for automated identification of congestive heart failure using heart rate signals
by
Oh, Shu Lih
,
Chua, Chua K
,
Fujita, Hamido
in
Automation
,
Diagnostic software
,
Diagnostic systems
2017
Electrocardiogram is widely used to diagnose the congestive heart failure (CHF). It is the primary noninvasive diagnostic tool that can guide in the management and follow-up of patients with CHF. Heart rate variability (HRV) signals which are nonlinear in nature possess the hidden signatures of various cardiac diseases. Therefore, this paper proposes a nonlinear methodology, empirical mode decomposition (EMD), for an automated identification and classification of normal and CHF using HRV signals. In this work, HRV signals are subjected to EMD to obtain intrinsic mode functions (IMFs). From these IMFs, thirteen nonlinear features such as approximate entropy ( E ap x ) , sample entropy ( E s x ) , Tsallis entropy ( E ts x ) , fuzzy entropy ( E f x ) , Kolmogorov Sinai entropy ( E ks x ) , modified multiscale entropy ( E mms y x ) , permutation entropy ( E p x ) , Renyi entropy ( E r x ) , Shannon entropy ( E sh x ) , wavelet entropy ( E w x ) , signal activity ( S a x ) , Hjorth mobility ( H m x ) , and Hjorth complexity ( H c x ) are extracted. Then, different ranking methods are used to rank these extracted features, and later, probabilistic neural network and support vector machine are used for differentiating the highly ranked nonlinear features into normal and CHF classes. We have obtained an accuracy, sensitivity, and specificity of 97.64, 97.01, and 98.24 %, respectively, in identifying the CHF. The proposed automated technique is able to identify the person having CHF alarming (alerting) the clinicians to respond quickly with proper treatment action. Thus, this method may act as a valuable tool for increasing the survival rate of many cardiac patients.
Journal Article
Automated detection of chronic kidney disease using higher-order features and elongated quinary patterns from B-mode ultrasound images
by
Oh, Shu Lih
,
Shah, Mohammad Nazri
,
Koh Joel En Wei
in
Automation
,
Diagnostic systems
,
Discriminant analysis
2020
Chronic kidney disease (CKD) is a continuing loss of kidney function, and early detection of this disease is fundamental to halting its progression to end-stage disease. Numerous methods have been proposed to detect CKD, mainly focusing on classification based upon peripheral clinical parameters and quantitative ultrasound parameters that must be manually calculated, or on shear wave elastography. No studies have been found that detect the presence or absence of CKD based solely from one B-mode ultrasound image. In this work, we propose an automated system to detect chronic kidney disease utilizing only the automatic extraction of features from a B-mode ultrasound image of the kidney, with a database of 405 images. Higher-order bispectrum and cumulants, and elongated quinary patterns, are extracted from each image to provide a final total of 24,480 features per image. These features were subjected to a locality sensitive discriminant analysis (LSDA) technique, which provides 30 LSDA coefficients. The coefficients were arranged according to their t value and inserted into various classifiers, to yield the best diagnostic accuracy using the least number of features. The best performance was obtained using a support vector machine and a radial basis function, utilizing only five features, resulting in an accuracy of 99.75%, a sensitivity of 100%, and a specificity of 99.57%. Based upon these findings, it is evident that the technique accurately and automatically identifies subjects with and without CKD from B-mode ultrasound images.
Journal Article
RETRACTED ARTICLE: Application of empirical mode decomposition (EMD) for automated identification of congestive heart failure using heart rate signals
by
U. Rajendra Acharya
,
Jen Hong Tan
,
Hamido Fujita
in
Artificial Intelligence
,
Computational Biology/Bioinformatics
,
Computational Science and Engineering
2017
Electrocardiogram is widely used to diagnose the congestive heart failure (CHF). It is the primary noninvasive diagnostic tool that can guide in the management and follow-up of patients with CHF. Heart rate variability (HRV) signals which are nonlinear in nature possess the hidden signatures of various cardiac diseases. Therefore, this paper proposes a nonlinear methodology, empirical mode decomposition (EMD), for an automated identification and classification of normal and CHF using HRV signals. In this work, HRV signals are subjected to EMD to obtain intrinsic mode functions (IMFs). From these IMFs, thirteen nonlinear features such as approximate entropy
(
E
ap
x
)
, sample entropy
(
E
s
x
)
, Tsallis entropy
(
E
ts
x
)
, fuzzy entropy
(
E
f
x
)
, Kolmogorov Sinai entropy
(
E
ks
x
)
, modified multiscale entropy
(
E
mms
y
x
)
, permutation entropy
(
E
p
x
)
, Renyi entropy
(
E
r
x
)
, Shannon entropy
(
E
sh
x
)
, wavelet entropy
(
E
w
x
)
, signal activity
(
S
a
x
)
, Hjorth mobility
(
H
m
x
)
, and Hjorth complexity
(
H
c
x
)
are extracted. Then, different ranking methods are used to rank these extracted features, and later, probabilistic neural network and support vector machine are used for differentiating the highly ranked nonlinear features into normal and CHF classes. We have obtained an accuracy, sensitivity, and specificity of 97.64, 97.01, and 98.24 %, respectively, in identifying the CHF. The proposed automated technique is able to identify the person having CHF alarming (alerting) the clinicians to respond quickly with proper treatment action. Thus, this method may act as a valuable tool for increasing the survival rate of many cardiac patients.
Journal Article
Artificial Intelligence Enabled Personalised Assistive Tools to Enhance Education of Children with Neurodevelopmental Disorders—A Review
2022
Mental disorders (MDs) with onset in childhood or adolescence include neurodevelopmental disorders (NDDs) (intellectual disability and specific learning disabilities, such as dyslexia, attention deficit disorder (ADHD), and autism spectrum disorders (ASD)), as well as a broad range of mental health disorders (MHDs), including anxiety, depressive, stress-related and psychotic disorders. There is a high co-morbidity of NDDs and MHDs. Globally, there have been dramatic increases in the diagnosis of childhood-onset mental disorders, with a 2- to 3-fold rise in prevalence for several MHDs in the US over the past 20 years. Depending on the type of MD, children often grapple with social and communication deficits and difficulties adapting to changes in their environment, which can impact their ability to learn effectively. To improve outcomes for children, it is important to provide timely and effective interventions. This review summarises the range and effectiveness of AI-assisted tools, developed using machine learning models, which have been applied to address learning challenges in students with a range of NDDs. Our review summarises the evidence that AI tools can be successfully used to improve social interaction and supportive education. Based on the limitations of existing AI tools, we provide recommendations for the development of future AI tools with a focus on providing personalised learning for individuals with NDDs.
Journal Article
Artificial intelligence assisted tools for the detection of anxiety and depression leading to suicidal ideation in adolescents: a review
by
Acharya, Udyavara Rajendra
,
Barua, Prabal Datta
,
Jahmunah, Jahmunah
in
Adolescents
,
Anxiety
,
Anxiety disorders
2024
Epidemiological studies report high levels of anxiety and depression amongst adolescents. These psychiatric conditions and complex interplays of biological, social and environmental factors are important risk factors for suicidal behaviours and suicide, which show a peak in late adolescence and early adulthood. Although deaths by suicide have fallen globally in recent years, suicide deaths are increasing in some countries, such as the US. Suicide prevention is a challenging global public health problem. Currently, there aren’t any validated clinical biomarkers for suicidal diagnosis, and traditional methods exhibit limitations. Artificial intelligence (AI) is budding in many fields, including in the diagnosis of medical conditions. This review paper summarizes recent studies (past 8 years) that employed AI tools for the automated detection of depression and/or anxiety disorder and discusses the limitations and effects of some modalities. The studies assert that AI tools produce promising results and could overcome the limitations of traditional diagnostic methods. Although using AI tools for suicidal ideation exhibits limitations, these are outweighed by the advantages. Thus, this review article also proposes extracting a fusion of features such as facial images, speech signals, and visual and clinical history features from deep models for the automated detection of depression and/or anxiety disorder in individuals, for future work. This may pave the way for the identification of individuals with suicidal thoughts.
Journal Article