Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
26
result(s) for
"Shubbar, Emman"
Sort by:
Effects of Recombinant α1-Microglobulin on Early Proteomic Response in Risk Organs after Exposure to 177Lu-Octreotate
2024
Recombinant α1-microglobulin (A1M) is proposed as a protector during 177Lu-octreotate treatment of neuroendocrine tumors, which is currently limited by bone marrow and renal toxicity. Co-administration of 177Lu-octreotate and A1M could result in a more effective treatment by protecting healthy tissue, but the radioprotective action of A1M is not fully understood. The aim of this study was to examine the proteomic response of kidneys and bone marrow early after 177Lu-octreotate and/or A1M administration. Mice were injected with 177Lu-octreotate and/or A1M, while control mice received saline or A1M vehicle solution. Bone marrow, kidney medulla, and kidney cortex were sampled after 24 h or 7 d. The differential protein expression was analyzed with tandem mass spectrometry. The dosimetric estimation was based on 177Lu activity in the kidney. PHLDA3 was the most prominent radiation-responsive protein in kidney tissue. In general, no statistically significant difference in the expression of radiation-related proteins was observed between the irradiated groups. Most canonical pathways were identified in bone marrow from the 177Lu-octreotate+A1M group. Altogether, a tissue-dependent proteomic response followed exposure to 177Lu-octreotate alone or together with A1M. Combining 177Lu-octreotate with A1M did not inhibit the radiation-induced protein expression early after exposure, and late effects should be further studied.
Journal Article
Hyperfractionated Treatment with 177Lu-Octreotate Increases Tumor Response in Human Small-Intestine Neuroendocrine GOT1 Tumor Model
by
Forssell-Aronsson, Eva
,
Shubbar, Emman
,
Elvborn, Mikael
in
Biodistribution
,
Bone marrow
,
Dosage
2022
Radionuclide treatment of patients with neuroendocrine tumors has advanced in the last decades with favorable results using 177Lu-octreotate. However, the gap between the high cure rate in animal studies vs. patient studies indicates a potential to increase the curation of patients. The aim of this study was to investigate the tumor response for different fractionation schemes with 177Lu-octreotate. BALB/c mice bearing a human small-intestine neuroendocrine GOT1 tumor were either mock treated with saline or injected intravenously with a total of 30–120 MBq of 177Lu-octreotate: 1 × 30, 2 × 15, 1 × 60, 2 × 30, 1 × 120, 2 × 60, or 3 × 40 MBq. The tumor volume was measured twice per week until the end of the experiment. The mean tumor volume for mice that received 2 × 15 = 30 and 1 × 30 MBq 177Lu-octreotate was reduced by 61% and 52%, respectively. The mean tumor volume was reduced by 91% and 44% for mice that received 2 × 30 = 60 and 1 × 60 MBq 177Lu-octreotate, respectively. After 120 MBq 177Lu-octreotate, given as 1–3 fractions, the mean tumor volume was reduced by 91–97%. Multiple fractions resulted in delayed regrowth and prolonged overall survival by 20–25% for the 120 MBq groups and by 45% for lower total activities, relative to one fraction. The results indicate that fractionation and hyperfractionation of 177Lu-octreotate are beneficial for tumor reduction and prolongs the time to regrowth.
Journal Article
Psoriasin (S100A7) increases the expression of ROS and VEGF and acts through RAGE to promote endothelial cell proliferation
by
Carlström, Maria
,
Shubbar, Emman
,
Petersson, Stina
in
Angiogenesis
,
Biological and medical sciences
,
Breast cancer
2012
Psoriasin (S100A7), originally identified in psoriasis, is a calcium-binding protein belonging to the multigenic S100 family. In high-grade ductal carcinoma in situ, psoriasin was identified as one of the most abundant transcripts. We have previously shown that psoriasin was induced by reactive oxygen species (ROS). Moreover, the downregulation of psoriasin by short hairpin RNA (shRNA) led to the reduced expression of vascular endothelial growth factor (VEGF) and inhibited tumor growth in vivo. The aim of the present study was to investigate whether psoriasin could have direct effects on endothelial cells. In this study we demonstrated that psoriasin increased VEGF expression in mammary epithelial cells. The treatment of endothelial cells with recombinant psoriasin increased proliferation comparable to that of recombinant VEGF protein. No change in proliferation was seen when endothelial cells were infected with psoriasin-expressing adenoviruses, suggesting that the proliferative effect of psoriasin was mediated by a specific receptor. Treatment with sRAGE, targeting the receptor for advanced glycation end products (RAGE), thus inhibited endothelial cell proliferation and tube formation enhanced by recombinant psoriasin. We showed that VEGF expression was not induced by hydrogen peroxide, when psoriasin was silenced by shRNA, which led to the hypothesis that psoriasin induces ROS. Indeed, psoriasin was shown to induce ROS in both endothelial and epithelial cells. Moreover, sRAGE inhibited the psoriasin-dependent generation of ROS in endothelial cells. Finally, treatment with antioxidant Bcl-2 protein abolished the effect of psoriasin on endothelial cell proliferation. Our data suggest that psoriasin expression in mammary epithelial cells leads to increased endothelial cell proliferation in a paracrine manner through RAGE. Psoriasin may therefore play a role in breast cancer progression by promoting oxidative stress response and angiogenesis.
Journal Article
Co-administration with A1M does not influence apoptotic response of 177Lu-octreotate in GOT1 neuroendocrine tumors
2023
Recombinant α
1
-microglobulin (A1M) is a proposed radioprotector during
177
Lu-octreotate therapy of neuroendocrine tumors (NETs). To ensure a maintained therapeutic effect, we previously demonstrated that A1M does not affect the
177
Lu-octreotate induced decrease in GOT1 tumor volume. However, the underlying biological events of these findings are still unknown. The aim of this work was to examine the regulation of apoptosis-related genes in GOT1 tumors short-time after i.v. administration of
177
Lu-octreotate with and without A1M or A1M alone. Human GOT1 tumor-bearing mice received 30 MBq
177
Lu-octreotate or 5 mg/kg A1M or co-treatment with both. Animals were sacrificed after 1 or 7 days. Gene expression analysis of apoptosis-related genes in GOT1 tissue was performed with RT-PCR. In general, similar expression patterns of pro- and anti-apoptotic genes were found after
177
Lu-octreotate exposure with or without co-administration of A1M. The highest regulated genes in both irradiated groups compared to untreated controls were FAS and TNFSFRS10B. Administration of A1M alone only resulted in significantly regulated genes after 7 days. Co-administration of A1M did not negatively affect the transcriptional apoptotic response of
177
Lu-octreotate in GOT1 tumors.
Journal Article
Gemcitabine potentiates the anti-tumour effect of radiation on medullary thyroid cancer
2019
Patients with medullary thyroid cancer (MTC) are often diagnosed with spread tumour disease and the development of better systemic treatment options for these patients is important. Treatment with the radiolabelled somatostatin analogue 177Lu-octreotate is already a promising option but can be optimised. For example, combination treatment with another substance could increase the effect on tumour tissue. Gemcitabine is a nucleoside analogue that has been shown to sensitise tumour cells to radiation. The aim of this study was to investigate potentially additive or synergistic effects of combining radiation with gemcitabine for treatment of MTC. Nude mice transplanted with patient-derived MTC tumours (GOT2) were divided into groups and treated with radiation and/or gemcitabine. Radiation treatment was given as 177Lu-octreotate or external beam radiotherapy (EBRT). The volume of treated and untreated tumours was followed. The absorbed dose and amount of gemcitabine were chosen to give moderate tumour volume reduction when given as monotherapy to enable detection of increased effects from combination treatment. After follow-up, the mice were killed and tumours were immunohistochemically (IHC) analysed. Overall, the animals that received a combination of EBRT and gemcitabine showed the largest reduction in tumour volume. Monotherapy with EBRT or gemcitabine also resulted in a clear detrimental effect on tumour volume, while the animals that received 177Lu-octreotate monotherapy showed similar response as the untreated animals. The GOT2 tumour was confirmed in the IHC analyses by markers for MTC. The IHC analyses also revealed that the proliferative activity of tumour cells was similar in all tumours, but indicated that fibrotic tissue was more common after EBRT and/or gemcitabine treatment. The results indicate that an additive, or even synergistic, effect may be achieved by combining radiation with gemcitabine for treatment of MTC. Future studies should be performed to evaluate the full potential of combining 177Lu-octreotate with gemcitabine in patients.
Journal Article
Long-term transcriptomic and proteomic effects in Sprague Dawley rat thyroid and plasma after internal low dose 131I exposure
by
Shubbar, Emman
,
Larsson, Malin
,
Spetz, Johan
in
Animals
,
Biology and Life Sciences
,
Blood Proteins - metabolism
2020
Radioiodide (131I) is commonly used to treat thyroid cancer and hyperthyroidis.131I released during nuclear accidents, have resulted in increased incidence of thyroid cancer in children. Therefore, a better understanding of underlying cellular mechanisms behind 131I exposure is of great clinical and radiation protection interest. The aim of this work was to study the long-term dose-related effects of 131I exposure in thyroid tissue and plasma in young rats and identify potential biomarkers.
Male Sprague Dawley rats (5-week-old) were i.v. injected with 0.5, 5.0, 50 or 500 kBq 131I (Dthyroid ca 1-1000 mGy), and killed after nine months at which time the thyroid and blood samples were collected. Gene expression microarray analysis (thyroid samples) and LC-MS/MS analysis (thyroid and plasma samples) were performed to assess differential gene and protein expression profiles in treated and corresponding untreated control samples. Bioinformatics analyses were performed using the DAVID functional annotation tool and Ingenuity Pathway Analysis (IPA). The gene expression microarray data and LC-MS/MS data were validated using qRT-PCR and ELISA, respectively.
Nine 131I exposure-related candidate biomarkers (transcripts: Afp and RT1-Bb, and proteins: ARF3, DLD, IKBKB, NONO, RAB6A, RPN2, and SLC25A5) were identified in thyroid tissue. Two dose-related protein candidate biomarkers were identified in thyroid (APRT and LDHA) and two in plasma (DSG4 and TGM3). Candidate biomarkers for thyroid function included the ACADL and SORBS2 (all activities), TPO and TG proteins (low activities). 131I exposure was shown to have a profound effect on metabolism, immune system, apoptosis and cell death. Furthermore, several signalling pathways essential for normal cellular function (actin cytoskeleton signalling, HGF signalling, NRF2-mediated oxidative stress, integrin signalling, calcium signalling) were also significantly regulated.
Exposure-related and dose-related effects on gene and protein expression generated few expression patterns useful as biomarkers for thyroid function and cancer.
Journal Article
Elevated cyclin B2 expression in invasive breast carcinoma is associated with unfavorable clinical outcome
by
Gunnarsdóttir, Katrin
,
Kovács, Anikó
,
Hajizadeh, Shahin
in
Adult
,
Aged
,
And prognostic marker
2013
Background
Breast cancer is a potentially fatal malignancy in females despite the improvement in therapeutic techniques. The identification of novel molecular signatures is needed for earlier detection, monitoring effects of treatment, and predicting prognosis. We have previously used microarray analysis to identify differentially expressed genes in aggressive breast tumors. The purpose of the present study was to investigate the prognostic value of the candidate biomarkers
CCNB2
,
ASPM
,
CDCA7
,
KIAA0101,
and
SLC27A2
in breast cancer.
Methods
The expression levels and subcellular localization of the CCNB2, ASPM, CDCA7, KIAA0101, and SLC27A2 proteins were measured using immunohistochemistry (IHC) on a panel of 80 primary invasive breast tumors. Furthermore, the mRNA levels of
CCNB2
,
KIAA0101,
and
SLC27A2
were subsequently examined by qRT-PCR to validate IHC results. Patient disease-specific survival (DSS) was evaluated in correlation to protein levels using the Kaplan-Meier method. Multivariate Cox regression analysis was used to determine the impact of aberrant protein expression of the candidate biomarkers on patient DSS and to estimate the hazard ratio at 8-year follow-up.
Results
Elevated cytoplasmic CCNB2 protein levels were strongly associated with short-term disease-specific survival of breast cancer patients (≤ 8 years;
P
<0.001) and with histological tumor type (
P
= 0.04). However, no association with other clinicopathological parameters was observed. Multivariate Cox regression analysis specified that CCNB2 protein expression is an independent prognostic marker of DSS in breast cancer. The predictive ability of several classical clinicopathological parameters was improved when used in conjunction with CCNB2 protein expression (C-index = 0.795) in comparison with a model without CCNB2 expression (C-index = 0.698). The protein levels of ASPM, CDCA7, KIAA0101, and SLC27A2 did not correlate with any clinicopathological parameter and had no influence on DSS. However, a significant correlation between the expression of the CCNB2 and ASPM proteins was detected (
P
= 0.03).
Conclusion
These findings suggest that cytoplasmic CCNB2 may function as an oncogene and could serve as a potential biomarker of unfavorable prognosis over short-term follow-up in breast cancer.
Journal Article
Correction: Long-term transcriptomic and proteomic effects in Sprague Dawley rat thyroid and plasma after internal low dose 131I exposure
2021
[This corrects the article DOI: 10.1371/journal.pone.0244098.].[This corrects the article DOI: 10.1371/journal.pone.0244098.].
Journal Article
Neuroblastoma xenograft models demonstrate the therapeutic potential of 177Lu-octreotate
by
Shubbar, Emman
,
Spetz, Johan
,
Palmer, Ruth H.
in
177Lu-DOTATATE
,
Biodistribution
,
Biomedical and Life Sciences
2021
Background
Neuroblastoma (NB) is one of the most frequently diagnosed tumors in infants. NB is a neuroendocrine tumor type with various characteristics and features, and with diverse outcome. The most malignant NBs have a 5-year survival rate of only 40–50%, indicating the need for novel and improved treatment options.
177
Lu-octreotate is routinely administered for treatment of neuroendocrine tumors overexpressing somatostatin receptors (SSTR). The aim of this study was to examine the biodistribution of
177
Lu-octreotate in mice bearing aggressive human NB cell lines, in order to evaluate the potential usefulness of
177
Lu-octreotate for treatment of NB.
Methods
BALB/c nude mice bearing CLB-BAR, CLB-GE or IMR-32 tumor xenografts (
n
= 5–7/group) were i.v. injected with 0.15 MBq, 1.5 MBq or 15 MBq
177
Lu-octreotate and sacrificed 1 h, 24 h, 48 h and 168 h after administration. The radioactivity concentration was determined for collected tissue samples, tumor-to-normal-tissue activity concentration ratios (T/N) and mean absorbed dose for each tissue were calculated. Immunohistochemical (IHC) staining for SSTR1–5, and Ki67 were carried out for tumor xenografts from the three cell lines.
Results
High
177
Lu concentration levels and T/N values were observed in all NB tumors, with the highest for CLB-GE tumor xenografts (72%IA/g 24 h p.i.; 1.5 MBq
177
Lu-octreotate). The mean absorbed dose to the tumor was 6.8 Gy, 54 Gy and 29 Gy for CLB-BAR, CLB-GE and IMR-32, respectively, p.i. of 15 MBq
177
Lu-octreotate. Receptor saturation was clearly observed in CLB-BAR, resulting in higher concentration levels in the tumor when lower activity levels where administered. IHC staining demonstrated highest expression of SSTR2 in CLB-GE, followed by CLB-BAR and IMR-32.
Conclusion
T/N values for all three human NB tumor xenograft types investigated were high relative to previously investigated neuroendocrine tumor types. The results indicate a clear potential of
177
Lu-octreotate as a therapeutic alternative for metastatic NB.
Journal Article
Increased therapeutic effect on medullary thyroid cancer using a combination of radiation and tyrosine kinase inhibitors
by
Montelius, Mikael
,
Ståhl, Ingun
,
Shubbar, Emman
in
Anilides - pharmacology
,
Animals
,
Anticancer properties
2020
Since patients with medullary thyroid cancer (MTC) often have metastatic disease at the time of diagnosis, the development of efficient systemic treatment options for MTC is important. Vandetanib and cabozantinib are two tyrosine kinase inhibitors (TKIs) that were recently approved by FDA and EMA for systemic treatment of metastatic MTC. Additionally, since MTC is of a neuroendocrine tumour type, treatment with radiolabelled somatostatin analogues (e.g. 177Lu-octreotate) is a valid option for patients with MTC. The aim of this study was to investigate the potentially increased therapeutic effect of combining radiation therapy with these TKIs for treatment of MTC in a mouse model. Nude mice carrying patient-derived MTC tumours (GOT2) were treated with external beam radiotherapy (EBRT) and/or one of the two TKIs vandetanib or cabozantinib. The tumour volume was determined and compared with that of mock-treated controls. The treatment doses were chosen to give a moderate effect as monotherapy to be able to detect any increased therapeutic effect from the combination therapy. At the end of follow-up, tumours were processed for immunohistochemical (IHC) analyses. The animals in the combination therapy groups showed the largest reduction in tumour volume and the longest time to tumour progression. Two weeks after start of treatment, the tumour volume for these mice was reduced by about 70-75% compared with controls. Furthermore, also EBRT and TKI monotherapy resulted in a clear anti-tumour effect with a reduced tumour growth compared with controls. The results show that an increased therapeutic effect could be achieved when irradiation is combined with TKIs for treatment of MTC. Future studies should evaluate the potential of using 177Lu-octreotate therapy in combination with TKIs in patients.
Journal Article