Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
15 result(s) for "Shuto, Nobuo"
Sort by:
Response to the 2011 Great East Japan Earthquake and Tsunami disaster
We revisited the lessons of the 2011 Great East Japan Earthquake Tsunami disaster specifically on the response and impact, and discussed the paradigm shift of Japan's tsunami disaster management policies and the perspectives for reconstruction. Revisiting the modern histories of Tohoku tsunami disasters and pre-2011 tsunami countermeasures, we clarified how Japan's coastal communities have prepared for tsunamis. The discussion mainly focuses on structural measures such as seawalls and breakwaters and non-structural measures of hazard map and evacuation. The responses to the 2011 event are discussed specifically on the tsunami warning system and efforts to identify the tsunami impacts. The nation-wide post-tsunami survey results shed light on the mechanisms of structural destruction, tsunami loads and structural vulnerability to inform structural rehabilitation measures and land-use planning. Remarkable paradigm shifts in designing coastal protection and disaster mitigation measures were introduced, leading with a new concept of potential tsunami levels: Prevention (Level 1) and Mitigation (Level 2) levels according to the level of 'protection'. The seawall is designed with reference to Level 1 tsunami scenario, while comprehensive disaster management measures should refer to Level 2 tsunami for protection of human lives and reducing potential losses and damage. Throughout the case study in Sendai city, the proposed reconstruction plan was evaluated from the tsunami engineering point of view to discuss how the post 2011 paradigm was implemented in coastal communities for future disaster mitigation. The analysis revealed that Sendai city's multiple protection measures for Level 2 tsunami will contribute to a substantial reduction of the tsunami inundation zone and potential losses, combined with an effective tsunami evacuation plan.
Lessons Learned from the 2011 Great East Japan Tsunami: Performance of Tsunami Countermeasures, Coastal Buildings, and Tsunami Evacuation in Japan
In 2011, Japan was hit by a tsunami that was generated by the greatest earthquake in its history. The first tsunami warning was announced 3 min after the earthquake, as is normal, but failed to estimate the actual tsunami height. Most of the structural countermeasures were not designed for the huge tsunami that was generated by the magnitude M  = 9.0 earthquake; as a result, many were destroyed and did not stop the tsunami. These structures included breakwaters, seawalls, water gates, and control forests. In this paper we discuss the performance of these countermeasures, and the mechanisms by which they were damaged; we also discuss damage to residential houses, commercial and public buildings, and evacuation buildings. Some topics regarding tsunami awareness and mitigation are discussed. The failures of structural defenses are a reminder that structural (hard) measures alone were not sufficient to protect people and buildings from a major disaster such as this. These defenses might be able to reduce the impact but should be designed so that they can survive even if the tsunami flows over them. Coastal residents should also understand the function and limit of the hard measures. For this purpose, non-structural (soft) measures, for example experience and awareness, are very important for promoting rapid evacuation in the event of a tsunami. An adequate communication system for tsunami warning messages and more evacuation shelters with evacuation routes in good condition might support a safe evacuation process. The combination of both hard and soft measures is very important for reducing the loss caused by a major tsunami. This tsunami has taught us that natural disasters can occur repeatedly and that their scale is sometimes larger than expected.
Tsunami hazard mitigation
The effect of giant tsunamis such as the Indian Ocean Tsunami in 2004 and the Great East Japan Earthquake Tsunami in 2011 has been devastating. In this study, a numerical simulation of the tsunami has been developed to estimate the physical characteristics of tsunamis and their effect on human society. Several laws and equations have been introduced for the simulation of tsunami propagation in the ocean, tsunami refraction, and tsunami run-up on land under a stable computational condition with acceptable accuracy. Our proposed method has been accepted as the world standard since 1997 and has been widely distributed to many countries through UNESCO.1) Computer graphic animations prepared by using the results of numerical simulation have been effectively used in public education and to increase the understanding of behaviors of the tsunami on the earth. When the numerical prediction of tsunami becomes possible with sufficient accuracy, then their results can be used to predict future damages and prevent the occurrence of a disaster. Data in the past were collected and expressed in terms of a newly introduced tsunami intensity which is related to the locally observed tsunami heights.
Response to the 2011 Great East Japan Earthquake and Tsunami disaster
We revisited the lessons of the 2011 Great East Japan Earthquake Tsunami disaster specifically on the response and impact, and discussed the paradigm shift of Japan's tsunami disaster management policies and the perspectives for reconstruction. Revisiting the modern histories of Tohoku tsunami disasters and pre-2011 tsunami countermeasures, we clarified how Japan's coastal communities have prepared for tsunamis. The discussion mainly focuses on structural measures such as seawalls and breakwaters and non-structural measures of hazard map and evacuation. The responses to the 2011 event are discussed specifically on the tsunami warning system and efforts to identify the tsunami impacts. The nation-wide post-tsunami survey results shed light on the mechanisms of structural destruction, tsunami loads and structural vulnerability to inform structural rehabilitation measures and land-use planning. Remarkable paradigm shifts in designing coastal protection and disaster mitigation measures were introduced, leading with a new concept of potential tsunami levels: Prevention (Level 1) and Mitigation (Level 2) levels according to the level of 'protection'. The seawall is designed with reference to Level 1 tsunami scenario, while comprehensive disaster management measures should refer to Level 2 tsunami for protection of human lives and reducing potential losses and damage. Throughout the case study in Sendai city, the proposed reconstruction plan was evaluated from the tsunami engineering point of view to discuss how the post 2011 paradigm was implemented in coastal communities for future disaster mitigation. The analysis revealed that Sendai city's multiple protection measures for Level 2 tsunami will contribute to a substantial reduction of the tsunami inundation zone and potential losses, combined with an effective tsunami evacuation plan.
Logic-tree Approach for Probabilistic Tsunami Hazard Analysis and its Applications to the Japanese Coasts
For Probabilistic Tsunami Hazard Analysis (PTHA), we propose a logic-tree approach to construct tsunami hazard curves (relationship between tsunami height and probability of exceedance) and present some examples for Japan for the purpose of quantitative assessments of tsunami risk for important coastal facilities. A hazard curve is obtained by integration over the aleatory uncertainties, and numerous hazard curves are obtained for different branches of logic-tree representing epistemic uncertainty. A PTHA consists of a tsunami source model and coastal tsunami height estimation. We developed the logic-tree models for local tsunami sources around Japan and for distant tsunami sources along the South American subduction zones. Logic-trees were made for tsunami source zones, size and frequency of tsunamigenic earthquakes, fault models, and standard error of estimated tsunami heights. Numerical simulation rather than empirical relation was used for estimating the median tsunami heights. Weights of discrete branches that represent alternative hypotheses and interpretations were determined by the questionnaire survey for tsunami and earthquake experts, whereas those representing the error of estimated value were determined on the basis of historical data. Examples of tsunami hazard curves were illustrated for the coastal sites, and uncertainty in the tsunami hazard was displayed by 5-, 16-, 50-, 84- and 95-percentile and mean hazard curves.[PUBLICATION ABSTRACT]
Tsunami Assessment for Risk Management at Nuclear Power Facilities in Japan
The present study focuses on evaluation of the maximum and minimum water levels caused by tsunamis as risk factors for operation and management at nuclear power facilities along the coastal area of Japan. Tsunamis generated by submarine earthquakes are examined, basing literature reviews and databases of information on historical tsunami events and run-up heights. For simulation of water level along the coast, a numerical calculation system should be designed with computational regions covering a particular site. Also the calculation system should be verified by comparison of historical and calculated tsunami heights. At the beginning of the tsunami assessment, the standard faults, their locations, mechanisms and maximum magnitudes should be carefully estimated by considering historical earthquake-induced tsunamis and seismo-tectonics at each area. Secondly, the range of errors in the model parameters should be considered since earthquakes and tsunamis are natural phenomena that involve natural variability as well as errors in estimating parameters. For these reasons, uncertainty-induced errors should be taken into account in the process of tsunami assessment with parametric study of the tsunami source model. The element tsunamis calculated by the standard fault models with the errors would be given for the design. Then, the design tsunami can be selected among the element tsunamis with the most significant impact, maximum and minimum water levels, on the site, bearing in mind the possible errors in the numerical calculation system. Finally, the design tsunami is verified by comparison with the run-up heights of historical tsunamis, ensuring that the design tsunami is selected as the highest of all historical and possible future tsunamis at the site.
Characteristics of Tsunamis Propagating over Oceanic Ridges: Numerical Simulation of the 1996 Irian Jaya Earthquake Tsunami
The 1996 Irian Jaya earthquake tsunami was simulated by using the numerical model based on the linear long wave theory including Coriolis force in the spherical coordinate system. The numerical modeling result at Chichijima is in good agreement with the observed tide gauge data. The distinctive oscillation at Chichijima can be interpreted as the formation of boundary waves, so called ridge waves that are excited on the South-Honshu ridge. The mechanism of tsunami propagation trapped on an oceanic ridge is analyzed with the simple ridge model. The result explains the characteristics of ridge waves excited on theSouth-Honshu ridge.[PUBLICATION ABSTRACT]