Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
81
result(s) for
"Si, Jiahui"
Sort by:
An intelligent detection approach for end-of-life power battery shell bolts
2024
With the rapid growth of the new energy vehicle industry, the number of end-of-life power batteries, which serve as the technological core, is also increasing significantly. Unfortunately, this rise in retired power batteries has led to severe environmental pollution and resource wastage. The detection of shell bolts in power batteries has thus become a crucial step in the recycling and disassembly process. To address this issue, this research proposes a detection method for end-of-life power battery shell bolts. Based on market analysis, the target bolt for the retired power battery shell was identified. The bolt images were collected and preprocessed to create a custom dataset on the experimental platform. Four popular object detection algorithms were compared, and the YOLOv8 model is selected to improve with EMA module. The improved YOLOv8 model achieves 98.9% for mAP_0.5, which increases more than 2 percentage points. Based on the repeatability of bolt recognition, this detection method can be used for the identification of bolts in other battery shells, providing a theoretical foundation for promoting the robotic disassembly of battery shells.
Journal Article
Maternal pre-pregnancy BMI, offspring epigenome-wide DNA methylation, and childhood obesity: findings from the Boston Birth Cohort
2023
Background
Maternal pre-pregnancy obesity is an established risk factor for childhood obesity. Investigating epigenetic alterations induced by maternal obesity during fetal development could gain mechanistic insight into the developmental origins of childhood obesity. While obesity disproportionately affects underrepresented racial and ethnic mothers and children in the USA, few studies investigated the role of prenatal epigenetic programming in intergenerational obesity of these high-risk populations.
Methods
This study included 903 mother–child pairs from the Boston Birth Cohort, a predominantly urban, low-income minority birth cohort. Mother-infant dyads were enrolled at birth and the children were followed prospectively to age 18 years. Infinium Methylation EPIC BeadChip was used to measure epigenome-wide methylation level of cord blood. We performed an epigenome-wide association study of maternal pre-pregnancy body mass index (BMI) and cord blood DNA methylation (DNAm). To quantify the degree to which cord blood DNAm mediates the maternal BMI-childhood obesity, we further investigated whether maternal BMI-associated DNAm sites impact birthweight or childhood overweight or obesity (OWO) from age 1 to age 18 and performed corresponding mediation analyses.
Results
The study sample contained 52.8% maternal pre-pregnancy OWO and 63.2% offspring OWO at age 1–18 years. Maternal BMI was associated with cord blood DNAm at 8 CpG sites (genome-wide false discovery rate [FDR] < 0.05). After accounting for the possible interplay of maternal BMI and smoking, 481 CpG sites were discovered for association with maternal BMI. Among them 123 CpGs were associated with childhood OWO, ranging from 42% decrease to 87% increase in OWO risk for each SD increase in DNAm. A total of 14 identified CpG sites showed a significant mediation effect on the maternal BMI-child OWO association (FDR < 0.05), with mediating proportion ranging from 3.99% to 25.21%. Several of these 14 CpGs were mapped to genes in association with energy balance and metabolism (
AKAP7
) and adulthood metabolic syndrome (
CAMK2B
).
Conclusions
This prospective birth cohort study in a high-risk yet understudied US population found that maternal pre-pregnancy OWO significantly altered DNAm in newborn cord blood and provided suggestive evidence of epigenetic involvement in the intergenerational risk of obesity.
Journal Article
Epigenome-wide analysis of DNA methylation and coronary heart disease: a nested case-control study
2021
Identifying environmentally responsive genetic loci where DNA methylation is associated with coronary heart disease (CHD) may reveal novel pathways or therapeutic targets for CHD. We conducted the first prospective epigenome-wide analysis of DNA methylation in relation to incident CHD in the Asian population.
We did a nested case-control study comprising incident CHD cases and 1:1 matched controls who were identified from the 10 year follow-up of the China Kadoorie Biobank. Methylation level of baseline blood leukocyte DNA was measured by Infinium Methylation EPIC BeadChip. We performed the single cytosine-phosphate-guanine (CpG) site association analysis and network approach to identify CHD-associated CpG sites and co-methylation gene module.
After quality control, 982 participants (mean age 50.1 years) were retained. Methylation level at 25 CpG sites across the genome was associated with incident CHD (genome-wide false discovery rate [FDR] < 0.05 or module-specific FDR < 0.01). One SD increase in methylation level of identified CpGs was associated with differences in CHD risk, ranging from a 47 % decrease to a 118 % increase. Mediation analyses revealed 28.5 % of the excessed CHD risk associated with smoking was mediated by methylation level at the promoter region of
gene (P for mediation effect = 0.036). Methylation level at the promoter region of
was associated with blood pressure and subsequent risk of CHD, with the mediating proportion to be 7.7 % (
= 0.003) via systolic blood pressure and 6.4 % (
= 0.006) via diastolic blood pressure. Network analysis revealed a co-methylation module associated with CHD.
We identified novel blood methylation alterations associated with incident CHD in the Asian population and provided evidence of the possible role of epigenetic regulations in the smoking- and blood pressure-related pathways to CHD risk.
This work was supported by National Natural Science Foundation of China (81390544 and 91846303). The CKB baseline survey and the first re-survey were supported by a grant from the Kadoorie Charitable Foundation in Hong Kong. The long-term follow-up is supported by grants from the UK Wellcome Trust (202922/Z/16/Z, 088158/Z/09/Z, 104085/Z/14/Z), grant (2016YFC0900500, 2016YFC0900501, 2016YFC0900504, 2016YFC1303904) from the National Key R&D Program of China, and Chinese Ministry of Science and Technology (2011BAI09B01).
Journal Article
Improved lipidomic profile mediates the effects of adherence to healthy lifestyles on coronary heart disease
2021
Adherence to healthy lifestyles is associated with reduced risk of coronary heart disease (CHD), but uncertainty persists about the underlying lipid pathway. In a case–control study of 4681 participants nested in the prospective China Kadoorie Biobank, 61 lipidomic markers in baseline plasma were measured by targeted nuclear magnetic resonance spectroscopy. Baseline lifestyles included smoking, alcohol consumption, dietary habit, physical activity, and adiposity levels. Genetic instrument was used to mimic the lipid-lowering effect of statins. We found that 35 lipid metabolites showed statistically significant mediation effects in the pathway from healthy lifestyles to CHD reduction, including very low-density lipoprotein (VLDL) particles and their cholesterol, large-sized high-density lipoprotein (HDL) particle and its cholesterol, and triglyceride in almost all lipoprotein subfractions. The statins genetic score was associated with reduced intermediate- and low-density lipoprotein, but weak or no association with VLDL and HDL. Lifestyle interventions and statins may improve different components of the lipid profile.
Journal Article
Shisa3 brakes resistance to EGFR-TKIs in lung adenocarcinoma by suppressing cancer stem cell properties
2019
Background
Although EGFR tyrosine kinase inhibitors (EGFR-TKIs) are beneficial to lung adenocarcinoma patients with sensitive EGFR mutations, resistance to these inhibitors induces a cancer stem cell (CSC) phenotype. Here, we clarify the function and molecular mechanism of shisa3 as a suppressor that can reverse EGFR-TKI resistance and inhibit CSC properties.
Methods
The suppresser genes involved in EGFR-TKI resistance were identified and validated by transcriptome sequencing, quantitative real-time PCR (qRT-PCR) and immunohistochemistry. Biological function analyses, cell half maximal inhibitory concentration
(
IC50), self-renewal, and migration and invasion capacities, were detected by CCK8, sphere formation and Transwell assays. Tumorigenesis and therapeutic effects were investigated in nonobese diabetic/severe combined immunodeficiency (nod-scid) mice. The underlying mechanisms were explored by Western blot and immunoprecipitation analyses.
Results
We found that low expression of shisa3 was related to EGFR-TKI resistance in lung adenocarcinoma patients. Ectopic overexpression of shisa3 inhibited CSC properties and the cell cycle in the lung adenocarcinoma cells resistant to gefitinib/osimertinib. In contrast, suppression of shisa3 promoted CSC phenotypes and the cell cycle in the cells sensitive to EGFR-TKIs. For TKI-resistant PC9/ER tumors in nod-scid mice, overexpressed shisa3 had a significant inhibitory effect. In addition, we verified that shisa3 inhibited EGFR-TKI resistance by interacting with FGFR1/3 to regulate AKT/mTOR signaling. Furthermore, combinational administration of inhibitors of FGFR/AKT/mTOR and cell cycle signaling could overcome EGFR-TKI resistance associated with shisa3-mediated CSC capacities in vivo.
Conclusion
Taken together, shisa3 was identified as a brake to EGFR-TKI resistance and CSC characteristics, probably through the FGFR/AKT/mTOR and cell cycle pathways, indicating that shisa3 and concomitant inhibition of its regulated signaling may be a promising therapeutic strategy for reversing EGFR-TKI resistance.
Journal Article
Genome-wide DNA methylation profiling in blood reveals epigenetic signature of incident acute coronary syndrome
2024
DNA methylation (DNAm) has been implicated in acute coronary syndrome (ACS), but the causality remains unclear in cross-sectional studies. Here, we conduct a prospective epigenome-wide association study of incident ACS in two Chinese cohorts (discovery: 751 nested case-control pairs; replication: 476 nested case-control pairs). We identified and validated 26 differentially methylated positions (DMPs, false discovery rate [
FDR
] <0.05), including three mapped to known cardiovascular disease genes (
PRKCZ
,
PRDM16
,
EHBP1L1
) and four with causal evidence from Mendelian randomization (
PRKCZ
,
TRIM27
,
EMC2
,
EHBP1L1
). Two hypomethylated DMPs were negatively correlated with the expression in blood of their mapped genes (
PIGG
and
EHBP1L1
), which were further found to overexpress in leukocytes and/or atheroma plaques. Finally, our DMPs could substantially improve the prediction of ACS over traditional risk factors and polygenic scores. These findings demonstrate the importance of DNAm in the pathogenesis of ACS and highlight DNAm as potential predictive biomarkers and treatment targets.
Here, the authors identify key DNA methylation sites associated with incident acute coronary syndrome (ACS), improving ACS prediction and highlighting potential biomarkers and therapeutic targets for ACS.
Journal Article
Construction of a circRNA-miRNA-mRNA Regulated Pathway Involved in EGFR-TKI Lung Adenocarcinoma Resistance
by
Liu, Bing
,
Dai, Chenyue
,
Ma, Yuanyuan
in
Adenocarcinoma
,
Adenocarcinoma of Lung - drug therapy
,
Adenocarcinoma of Lung - genetics
2021
Objectives: Epidermal growth factor receptor-tyrosine kinase inhibitors are widely used for lung epidermal growth factor receptor-positive lung adenocarcinomas, but acquired resistance is inevitable. Although non-coding RNAs, such as circular RNA and microRNA, are known to play vital roles in epidermal growth factor receptor-tyrosine kinase inhibitor resistance, comprehensive analysis is lacking. Thus, this study aimed to explore the circular RNA-microRNA-messenger RNA regulatory network involved in epidermal growth factor receptor-tyrosine kinase inhibitor resistance. Methods: To identify differentially expressed genes between the epidermal growth factor receptor-tyrosine kinase inhibitor sensitive cell line PC9 and resistant cell line PC9/ epidermal growth factor receptor-tyrosine kinase inhibitor resistance(PC9/ER), circular RNA, microRNA and messenger RNA microarrays were performed. Candidates were then identified to construct a circular RNA-microRNA-messenger RNA network using bioinformatics. Additionally, Gene Oncology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were conducted to evaluate the network messenger RNA, setting up a protein-protein interaction network for hub-gene identification. Afterwards, RNA immunoprecipitation was performed to enrich microRNA, and quantitative real-time PCR was used to estimated gene expression levels. Results: In total, 603, 377, and 1863 differentially expressed circular RNA, microRNA, messenger RNAs, respectively, were identified using microarray analysis, constructing a circular RNA-microRNA-messenger RNA network containing 18 circular RNAs, 17 microRNAs and 175 messenger RNAs. Moreover, Gene Oncology and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that the most enriched biological process terms and pathways were related to epidermal growth factor receptor-tyrosine kinase inhibitor resistance, including Wnt and Hippo signaling pathways. Based on the competing endogenous RNA and protein-protein interaction network, circ-0007312 was showed to interact with miR-764 and both circ-0003748 and circ-0001398 were shown to interact with miR-628; both these microRNAs targeted MAPK1. Furthermore, circ-0007312, circ-0003748, circ-0001398, and MAPK1 were up-regulated, whereas miR-764 and miR-628 were downregulated in PC9/ER cells as compared to parental PC9 cells. We also found that circ-0007312 and miR-764 were positively expressed in plasma. Conclusions: Our original study associated with mechanism of target therapy in lung cancer provided a systematic and comprehensive regulation of circular RNA, microRNA and messenger RNA in epidermal growth factor receptor-tyrosine kinase inhibitor resistance. It was found that circ-0007312- miR-764-MAPK1, circ-0003748-miR-628-MAPK1, and circ-0001398-miR-628-MAPK1 axis may play key roles in epidermal growth factor receptor-tyrosine kinase inhibitor resistance.
Journal Article
Minimal improvement in coronary artery disease risk prediction in Chinese population using polygenic risk scores: Evidence from the China Kadoorie Biobank
2023
Several studies have reported that polygenic risk scores (PRSs) can enhance risk prediction of coronary artery disease (CAD) in European populations. However, research on this topic is far from sufficient in non-European countries, including China. We aimed to evaluate the potential of PRS for predicting CAD for primary prevention in the Chinese population.
Participants with genome-wide genotypic data from the China Kadoorie Biobank were divided into training ( n = 28,490) and testing sets ( n = 72,150). Ten previously developed PRSs were evaluated, and new ones were developed using clumping and thresholding or LDpred method. The PRS showing the strongest association with CAD in the training set was selected to further evaluate its effects on improving the traditional CAD risk-prediction model in the testing set. Genetic risk was computed by summing the product of the weights and allele dosages across genome-wide single-nucleotide polymorphisms. Prediction of the 10-year first CAD events was assessed using hazard ratios (HRs) and measures of model discrimination, calibration, and net reclassification improvement (NRI). Hard CAD (nonfatal I21-I23 and fatal I20-I25) and soft CAD (all fatal or nonfatal I20-I25) were analyzed separately.
In the testing set, 1214 hard and 7201 soft CAD cases were documented during a mean follow-up of 11.2 years. The HR per standard deviation of the optimal PRS was 1.26 (95% CI:1.19-1.33) for hard CAD. Based on a traditional CAD risk prediction model containing only non-laboratory-based information, the addition of PRS for hard CAD increased Harrell's C index by 0.001 (-0.001 to 0.003) in women and 0.003 (0.001 to 0.005) in men. Among the different high-risk thresholds ranging from 1% to 10%, the highest categorical NRI was 3.2% (95% CI: 0.4-6.0%) at a high-risk threshold of 10.0% in women. The association of the PRS with soft CAD was much weaker than with hard CAD, leading to minimal or no improvement in the soft CAD model.
In this Chinese population sample, the current PRSs minimally changed risk discrimination and offered little improvement in risk stratification for soft CAD. Therefore, this may not be suitable for promoting genetic screening in the general Chinese population to improve CAD risk prediction.
Journal Article
Tea consumption and risk of ischaemic heart disease
2017
ObjectiveTo prospectively examine the association between tea consumption and the risk of ischaemic heart disease (IHD).MethodsProspective study using the China Kadoorie Biobank; participants from 10 areas across China were enrolled during 2004–2008 and followed up until 31 December 2013. After excluding participants with cancer, heart disease and stroke at baseline, the present study included 199 293 men and 288 082 women aged 30–79 years at baseline. Information on IHD incidence was collected through disease registries and the new national health insurance databases.ResultsDuring a median follow-up of 7.2 years, we documented 24 665 (7.19 cases/1000 person-years) incident IHD cases and 3959 (1.13 cases/1000 person-years) major coronary events (MCEs). Tea consumption was associated with reduced risk of IHD and MCE. In the whole cohort, compared with participants who never consumed tea during the past 12 months, the multivariable-adjusted HRs and 95% CIs for less than daily and daily tea consumers were 0.97 (0.94 to 1.00) and 0.92 (0.88 to 0.95) for IHD, 0.92 (0.85 to 1.00) and 0.90 (0.82 to 0.99) for MCE. No linear trends in the HRs across the amount of tea were observed in daily consumers for IHD and MCE (PLinear >0.05). The inverse association between tea consumption and IHD was stronger in rural (PInteraction 0.006 for IHD, <0.001 for MCE), non-obese (PInteraction 0.012 for MCE) and non-diabetes participants (PInteraction 0.004 for IHD).ConclusionsIn this large prospective study, daily tea consumption was associated with a reduced risk of IHD.
Journal Article