Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
246
result(s) for
"Sibley, L. David"
Sort by:
Toxoplasma gondii infection and its implications within the central nervous system
by
David, Sibley L
,
Rinkenberger Nicholas
,
Dunay, Ildiko R
in
Central nervous system
,
Cysts
,
Disease control
2021
Toxoplasma gondii is a parasite that infects a wide range of animals and causes zoonotic infections in humans. Although it normally only results in mild illness in healthy individuals, toxoplasmosis is a common opportunistic infection with high mortality in individuals who are immunocompromised, most commonly due to reactivation of infection in the central nervous system. In the acute phase of infection, interferon-dependent immune responses control rapid parasite expansion and mitigate acute disease symptoms. However, after dissemination the parasite differentiates into semi-dormant cysts that form within muscle cells and neurons, where they persist for life in the infected host. Control of infection in the central nervous system, a compartment of immune privilege, relies on modified immune responses that aim to balance infection control while limiting potential damage due to inflammation. In response to the activation of interferon-mediated pathways, the parasite deploys an array of effector proteins to escape immune clearance and ensure latent survival. Although these pathways are best studied in the laboratory mouse, emerging evidence points to unique mechanisms of control in human toxoplasmosis. In this Review, we explore some of these recent findings that extend our understanding for proliferation, establishment and control of toxoplasmosis in humans.Toxoplasmosis caused by the parasite Toxoplasma gondii is a common opportunistic infection with high mortality in individuals who are immunocompromised, most commonly due to reactivation of infection in the central nervous system (CNS). In this Review, Sibley and colleagues explore the interaction between host immune defences and parasite virulence factors with emphasis on bradyzoite differentiation and survival of T. gondii within the CNS.
Journal Article
Modulation of innate immunity by Toxoplasma gondii virulence effectors
2012
Key Points
The parasite
Toxoplasma gondii
is extremely widespread in animals and is a common cause of food- and water-borne infection in people. Although most infections are benign, they can have severe consequences in immunocompromised patients and following congenital infection.
T. gondii
is regarded as a model intracellular parasite for which forward- and reverse-genetics tools are available. In combination with the mouse model of toxoplasmosis (including the many genetic knockout and transgenic mouse lines that are available), these tools for genetic manipulation of the parasite have enabled researchers to explore the molecular determinants of
T. gondii
pathogenesis and host defence.
Forward-genetics crosses conducted in
T. gondii
, using strains of different genotypes and virulences in mice, revealed that acute virulence is largely mediated by a family of effector proteins that are secreted into the host cell cytoplasm during parasite invasion. These proteins are derived from a secretory organelle called the rhoptry and, hence, are called ROP effectors.
ROPs include a family of serine/threonine kinases that affect host targets and have important roles in infection in the mouse. Among these, ROP18 phosphorylates immunity-related GTPases, thus promoting parasite survival in activated macrophages, whereas ROP16 phosphorylates signal transducer and activator of transcription 3 (STAT3) and STAT6 and, hence, alters host gene transcription. Curiously, the activity of ROP18 is mediated by another family member called ROP5, which is a pseudokinase.
Although a limited subset of ROP kinases can largely explain the virulence of
T. gondii
in the mouse, their role in other hosts has not been established. The genome encodes more than 40 ROPs, and these different proteins might have distinct roles during infection in the wide range of hosts infected by
T. gondii
. Understanding these patterns might help in the prevention and treatment of human infections.
The intracellular parasite
Toxoplasma gondii
can infect a range of hosts and occasionally causes serious disease in humans. In this Review, Hunter and Sibley summarize recent studies that implicate rhoptry kinases and a dense-granule protein as mediators of acute virulence in the mouse model. They also describe the complex interplay between these parasite effector proteins and the innate immune system.
Toxoplasma gondii
is a common parasite of animals and humans and can cause serious opportunistic infections. However, the majority of infections are asymptomatic, possibly because the organism has co-evolved with its many vertebrate hosts and has developed multiple strategies to persist asymptomatically for the lifetime of the host. Over the past two decades, infection studies in the mouse, combined with forward-genetics approaches aimed at unravelling the molecular basis of infection, have revealed that
T. gondii
virulence is mediated, in part, by secretion of effector proteins into the host cell during invasion. Here, we review recent advances that illustrate how these virulence factors disarm innate immunity and promote survival of the parasite.
Journal Article
Cryo-EM structure of cortical microtubules from human parasite Toxoplasma gondii identifies their microtubule inner proteins
2021
In living cells, microtubules (MTs) play pleiotropic roles, which require very different mechanical properties. Unlike the dynamic MTs found in the cytoplasm of metazoan cells, the specialized cortical MTs from
Toxoplasma gondii
, a prevalent human pathogen, are extraordinarily stable and resistant to detergent and cold treatments. Using single-particle cryo-EM, we determine their ex vivo structure and identify three proteins (TrxL1, TrxL2 and SPM1) as bona fide microtubule inner proteins (MIPs). These three MIPs form a mesh on the luminal surface and simultaneously stabilize the tubulin lattice in both longitudinal and lateral directions. Consistent with previous observations, deletion of the identified MIPs compromises MT stability and integrity under challenges by chemical treatments. We also visualize a small molecule like density at the Taxol-binding site of β-tubulin. Our results provide the structural basis to understand the stability of cortical MTs and suggest an evolutionarily conserved mechanism of MT stabilization from the inside.
Cortical microtubules (MTs) in Apicomplexa are specialized MTs involved in maintaining the parasite’s shape and are, as such, unusually stable. Here, cryo-EM analysis of cortical MTs from
Toxoplasma gondii
offers insight into the mechanism of their stabilization by three bona fide microtubule inner proteins.
Journal Article
WDFY4 is required for cross-presentation in response to viral and tumor antigens
by
Murphy, Theresa L.
,
Durai, Vivek
,
Bagadia, Prachi
in
Animals
,
Antigen (tumor-associated)
,
Antigen presentation
2018
Immune responses to viral or tumor antigens are typically initiated by the process of cross-presentation. Cross-presentation is believed to be the major way that innate immune cells, such as the classical dendritic cell 1 (cDC1) subset, activate and prime immunological T cells. Theisen et al. used CRISPR-based screening to identify regulators of cross-presentation by cDC1s (see the Perspective by Barbet and Blander). One such regulator that was identified, WDFY4 (WD repeat- and FYVE domain–containing protein 4), was required for cross-presentation of cell- and bacterial-associated antigens. WDFY4 played a critical role in cDC1-mediated viral and tumor immunity yet did not seem necessary for major histocompatibility complex class II presentation or for cross-presentation by monocyte-derived DCs. Science , this issue p. 694 ; see also p. 641 Dendritic cells require WDFY4 for cross-presentation. During the process of cross-presentation, viral or tumor-derived antigens are presented to CD8 + T cells by Batf3- dependent CD8α + /XCR1 + classical dendritic cells (cDC1s). We designed a functional CRISPR screen for previously unknown regulators of cross-presentation, and identified the BEACH domain–containing protein WDFY4 as essential for cross-presentation of cell-associated antigens by cDC1s in mice. However, WDFY4 was not required for major histocompatibility complex class II presentation, nor for cross-presentation by monocyte-derived dendritic cells. In contrast to Batf3 –/– mice, Wdfy4 –/– mice displayed normal lymphoid and nonlymphoid cDC1 populations that produce interleukin-12 and protect against Toxoplasma gondii infection. However, similar to Batf3 –/– mice, Wdfy4 –/– mice failed to prime virus-specific CD8 + T cells in vivo or induce tumor rejection, revealing a critical role for cross-presentation in antiviral and antitumor immunity.
Journal Article
Efficient Gene Disruption in Diverse Strains of Toxoplasma gondii Using CRISPR/CAS9
2014
Toxoplasma gondii has become a model for studying the phylum Apicomplexa, in part due to the availability of excellent genetic tools. Although reverse genetic tools are available in a few widely utilized laboratory strains, they rely on special genetic backgrounds that are not easily implemented in natural isolates. Recent progress in modifying CRISPR (clustered regularly interspaced short palindromic repeats), a system of DNA recognition used as a defense mechanism in bacteria and archaea, has led to extremely efficient gene disruption in a variety of organisms. Here we utilized a CRISPR/CAS9-based system with single guide RNAs to disrupt genes in T. gondii . CRISPR/CAS9 provided an extremely efficient system for targeted gene disruption and for site-specific insertion of selectable markers through homologous recombination. CRISPR/CAS9 also facilitated site-specific insertion in the absence of homology, thus increasing the utility of this approach over existing technology. We then tested whether CRISPR/CAS9 would enable efficient transformation of a natural isolate. Using CRISPR/CAS9, we were able to rapidly generate both rop18 knockouts and complemented lines in the type I GT1 strain, which has been used for forward genetic crosses but which remains refractory to reverse genetic approaches. Assessment of their phenotypes in vivo revealed that ROP18 contributed a greater proportion to acute pathogenesis in GT1 than in the laboratory type I RH strain. Thus, CRISPR/CAS9 extends reverse genetic techniques to diverse isolates of T. gondii , allowing exploration of a much wider spectrum of biological diversity. IMPORTANCE Genetic approaches have proven very powerful for studying the biology of organisms, including microbes. However, ease of genetic manipulation varies widely among isolates, with common lab isolates often being the most amenable to such approaches. Unfortunately, such common lab isolates have also been passaged frequently in vitro and have thus lost many of the attributes of wild isolates, often affecting important traits, like virulence. On the other hand, wild isolates are often not amenable to standard genetic approaches, thus limiting inquiry about the genetic basis of biological diversity. Here we imported a new genetic system based on CRISPR/CAS9, which allows high efficiency of targeted gene disruption in natural isolates of T. gondii . This advance promises to bring the power of genetics to bear on the broad diversity of T. gondii strains that have been described recently. Genetic approaches have proven very powerful for studying the biology of organisms, including microbes. However, ease of genetic manipulation varies widely among isolates, with common lab isolates often being the most amenable to such approaches. Unfortunately, such common lab isolates have also been passaged frequently in vitro and have thus lost many of the attributes of wild isolates, often affecting important traits, like virulence. On the other hand, wild isolates are often not amenable to standard genetic approaches, thus limiting inquiry about the genetic basis of biological diversity. Here we imported a new genetic system based on CRISPR/CAS9, which allows high efficiency of targeted gene disruption in natural isolates of T. gondii . This advance promises to bring the power of genetics to bear on the broad diversity of T. gondii strains that have been described recently.
Journal Article
Distinct signalling pathways control Toxoplasma egress and host-cell invasion
by
Lourido, Sebastian
,
Tang, Keliang
,
Sibley, L David
in
apicomplexan parasite
,
Blotting, Western
,
Calcimycin
2012
Calcium signalling coordinates motility, cell invasion, and egress by apicomplexan parasites, yet the key mediators that transduce these signals remain largely unknown. One underlying assumption is that invasion into and egress from the host cell depend on highly similar systems to initiate motility. Using a chemical‐genetic approach to specifically inhibit select calcium‐dependent kinases (CDPKs), we instead demonstrate that these pathways are controlled by different kinases: both TgCDPK1 and TgCDPK3 were required during ionophore‐induced egress, but only TgCDPK1 was required during invasion. Similarly, microneme secretion, which is necessary for motility during both invasion and egress, universally depended on TgCDPK1, but only exhibited TgCDPK3 dependence when triggered by certain stimuli. We also demonstrate that egress likely comes under a further level of control by cyclic GMP‐dependent protein kinase and that its activation can induce egress and partially compensate for the inhibition of TgCDPK3. These results demonstrate that separate signalling pathways are integrated to regulate motility in response to the different signals that promote invasion or egress during infection by
Toxoplasma gondii
.
Toxoplasma gondii
invasion into and egress from host cells are thought to depend upon similar pathways. Here, the TgCDPK3 signalling pathway is shown to be required for egress, while TgCDPK1 signalling governs both parasite egress and invasion.
Journal Article
Toxoplasma aldolase is required for metabolism but dispensable for host-cell invasion
2014
Gliding motility and host-cell invasion by apicomplexan parasites depend on cell-surface adhesins that are translocated via an actin–myosin motor beneath the membrane. The current model posits that fructose-1,6-bisphosphate aldolase (ALD) provides a critical link between the cytoplasmic tails of transmembrane adhesins and the actin–myosin motor. Here we tested this model using the Toxoplasma gondii apical membrane protein 1 (TgAMA1), which binds to aldolase in vitro. TgAMA1 cytoplasmic tail mutations that disrupt ALD binding in vitro showed no correlation with host-cell invasion, indicating this interaction is not essential. Furthermore, ALD-depleted parasites were impaired when grown in glucose, yet they showed normal gliding and invasion in glucose-free medium. Depletion of ALD in the presence of glucose led to accumulation of fructose-1,6-bisphosphate, which has been associated with toxicity in other systems. Finally, TgALD knockout parasites and an ALD mutant that specifically disrupts adhesin binding in vitro also supported normal invasion when cultured in glucose-free medium. Taken together, these results suggest that ALD is primarily important for energy metabolism rather than interacting with microneme adhesins, challenging the current model for apicomplexan motility and invasion.
Journal Article
Plasma Membrane Association by N-Acylation Governs PKG Function in Toxoplasma gondii
by
Brown, Kevin M.
,
Sibley, L. David
,
Long, Shaojun
in
Acylation
,
Animals
,
Cell Membrane - metabolism
2017
Cyclic GMP (cGMP)-dependent protein kinase (protein kinase G [PKG]) is essential for microneme secretion, motility, invasion, and egress in apicomplexan parasites, However, the separate roles of two isoforms of the kinase that are expressed by some apicomplexans remain uncertain. Despite having identical regulatory and catalytic domains, PKG I is plasma membrane associated whereas PKG II is cytosolic in Toxoplasma gondii . To determine whether these isoforms are functionally distinct or redundant, we developed an auxin-inducible degron (AID) tagging system for conditional protein depletion in T. gondii . By combining AID regulation with genome editing strategies, we determined that PKG I is necessary and fully sufficient for PKG-dependent cellular processes. Conversely, PKG II is functionally insufficient and dispensable in the presence of PKG I . The difference in functionality mapped to the first 15 residues of PKG I , containing a myristoylated Gly residue at position 2 that is critical for membrane association and PKG function. Collectively, we have identified a novel requirement for cGMP signaling at the plasma membrane and developed a new system for examining essential proteins in T. gondii . IMPORTANCE Toxoplasma gondii is an obligate intracellular apicomplexan parasite and important clinical and veterinary pathogen that causes toxoplasmosis. Since apicomplexans can only propagate within host cells, efficient invasion is critically important for their life cycles. Previous studies using chemical genetics demonstrated that cyclic GMP signaling through protein kinase G (PKG)-controlled invasion by apicomplexan parasites. However, these studies did not resolve functional differences between two compartmentalized isoforms of the kinase. Here we developed a conditional protein regulation tool to interrogate PKG isoforms in T. gondii . We found that the cytosolic PKG isoform was largely insufficient and dispensable. In contrast, the plasma membrane-associated isoform was necessary and fully sufficient for PKG function. Our studies identify the plasma membrane as a key location for PKG activity and provide a broadly applicable system for examining essential proteins in T. gondii . Toxoplasma gondii is an obligate intracellular apicomplexan parasite and important clinical and veterinary pathogen that causes toxoplasmosis. Since apicomplexans can only propagate within host cells, efficient invasion is critically important for their life cycles. Previous studies using chemical genetics demonstrated that cyclic GMP signaling through protein kinase G (PKG)-controlled invasion by apicomplexan parasites. However, these studies did not resolve functional differences between two compartmentalized isoforms of the kinase. Here we developed a conditional protein regulation tool to interrogate PKG isoforms in T. gondii . We found that the cytosolic PKG isoform was largely insufficient and dispensable. In contrast, the plasma membrane-associated isoform was necessary and fully sufficient for PKG function. Our studies identify the plasma membrane as a key location for PKG activity and provide a broadly applicable system for examining essential proteins in T. gondii .
Journal Article
Insulinase-like Protease 1 Contributes to Macrogamont Formation in Cryptosporidium parvum
2021
Cryptosporidiosis is a debilitating diarrheal disease in young children in developing countries. The absence of effective treatments or vaccines makes this infection very difficult to manage in susceptible populations. The apicomplexan parasite Cryptosporidium parvum contains an expanded family of 22 insulinase-like proteases (INS), a feature that contrasts with their otherwise streamlined genome. Here, we examined the function of INS1, which is most similar to the human insulinase protease that cleaves a variety of small peptide substrates. INS1 is an M16A clan member and contains a signal peptide, an N-terminal domain with the HXXEH active site, followed by three inactive domains. Unlike previously studied C. parvum INS proteins that are expressed in sporozoites and during merogony, INS1 was expressed exclusively in macrogamonts, where it was localized in small cytoplasmic vesicles. Although INS1 did not colocalize with the oocyst wall protein recognized by the antibody OW50, immune-electron microscopy indicated that INS1 resides in small vesicles in the secretory system. Notably, these small INS1-positive vesicles were often in close proximity to large OW50-positive vacuoles resembling wall-forming bodies, which contain precursors for oocyst wall formation. Genetic deletion of INS1, or replacement with an active-site mutant, resulted in lower formation of macrogamonts in vitro and reduced oocyst shedding in vivo . Our findings reveal that INS1 functions in the formation or maturation of macrogamonts and that its loss results in attenuated virulence in immunocompromised mice. IMPORTANCE Cryptosporidiosis is a debilitating diarrheal disease in young children in developing countries. The absence of effective treatments or vaccines makes this infection very difficult to manage in susceptible populations. Although the oral dose of oocysts needed to cause infection is low, infected individuals shed very high numbers of oocysts, readily contaminating the environment. Our studies demonstrate that the protease INS1 is important for formation of female sexual stages and that in its absence, parasites produce fewer oocysts and are attenuated in immunocompromised mice. These findings suggest that mutants lacking INS1, or related proteases, are useful for further characterizing the pathway that leads to macrogamont maturation and oocyst wall formation.
Journal Article
A conserved ankyrin repeat-containing protein regulates conoid stability, motility and cell invasion in Toxoplasma gondii
by
Drewry, Lisa L.
,
Sibley, L. David
,
Long, Shaojun
in
631/326/417/1716
,
631/80/128/1653
,
Ankyrin Repeat
2017
Apicomplexan parasites are typified by an apical complex that contains a unique microtubule-organizing center (MTOC) that organizes the cytoskeleton. In apicomplexan parasites such as
Toxoplasma gondii
, the apical complex includes a spiral cap of tubulin-rich fibers called the conoid. Although described ultrastructurally, the composition and functions of the conoid are largely unknown. Here, we localize 11 previously undescribed apical proteins in
T
.
gondii
and identify an essential component named conoid protein hub 1 (CPH1), which is conserved in apicomplexan parasites. CPH1 contains ankyrin repeats that are required for structural integrity of the conoid, parasite motility, and host cell invasion. Proximity labeling and protein interaction network analysis reveal that CPH1 functions as a hub linking key motor and structural proteins that contain intrinsically disordered regions and coiled coil domains. Our findings highlight the importance of essential protein hubs in controlling biological networks of MTOCs in early-branching protozoan parasites.
Apicomplexan parasites such as
Toxoplasma gondii
possess a tubulin-rich structure called the conoid. Here, Long et al. identify a conoid protein that interacts with motor and structural proteins and is required for structural integrity of the conoid, parasite motility, and host cell invasion.
Journal Article