Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
30
result(s) for
"Siddell, Stuart G."
Sort by:
High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling
by
Chung, Betty Y.-W.
,
Jones, Joshua D.
,
Siddell, Stuart G.
in
Animals
,
Bacteriology
,
Biology and Life Sciences
2016
Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global \"snap-shot\" of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal frameshift site. To our knowledge this is the first application of ribosome profiling to an RNA virus.
Journal Article
Recent changes to virus taxonomy ratified by the International Committee on Taxonomy of Viruses (2022)
2022
This article reports the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2022. The entire ICTV was invited to vote on 174 taxonomic proposals approved by the ICTV Executive Committee at its annual meeting in July 2021. All proposals were ratified by an absolute majority of the ICTV members. Of note, the Study Groups have started to implement the new rule for uniform virus species naming that became effective in 2021 and mandates the binomial ‘Genus_name species_epithet’ format with or without Latinization. As a result of this ratification, the names of 6,481 virus species (more than 60 percent of all species names currently recognized by ICTV) now follow this format.
Journal Article
Changes to virus taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2019)
by
Dempsey, Donald M
,
Kropinski, Andrew M
,
Davison, Andrew J
in
Nomenclature
,
Ribonucleic acid
,
Taxonomy
2019
This article reports the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in February 2019. Of note, in addition to seven new virus families, the ICTV has approved, by an absolute majority, the creation of the realm Riboviria, a likely monophyletic group encompassing all viruses with positive-strand, negative-strand and double-strand genomic RNA that use cognate RNA-directed RNA polymerases for replication.
Journal Article
Changes to taxonomy and the International code of virus classification and nomenclature ratified by the International Committee on Taxonomy of Viruses (2017)
by
Kropinski, Andrew M
,
Knowles, Nick J
,
Siddell, Stuart G
in
Biodiversity
,
Biomedical and Life Sciences
,
Biomedicine
2017
This article lists the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2017.This article lists the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in March 2017.
Journal Article
Manipulation of the unfolded protein response: A pharmacological strategy against coronavirus infection
by
Cook, Georgia M.
,
Siddell, Stuart G.
,
Brierley, Ian
in
Activating Transcription Factor 6 - metabolism
,
Animals
,
Antiviral Agents - pharmacology
2021
Coronavirus infection induces the unfolded protein response (UPR), a cellular signalling pathway composed of three branches, triggered by unfolded proteins in the endoplasmic reticulum (ER) due to high ER load. We have used RNA sequencing and ribosome profiling to investigate holistically the transcriptional and translational response to cellular infection by murine hepatitis virus (MHV), often used as a model for the Betacoronavirus genus to which the recently emerged SARS-CoV-2 also belongs. We found the UPR to be amongst the most significantly up-regulated pathways in response to MHV infection. To confirm and extend these observations, we show experimentally the induction of all three branches of the UPR in both MHV- and SARS-CoV-2-infected cells. Over-expression of the SARS-CoV-2 ORF8 or S proteins alone is itself sufficient to induce the UPR. Remarkably, pharmacological inhibition of the UPR greatly reduced the replication of both MHV and SARS-CoV-2, revealing the importance of this pathway for successful coronavirus replication. This was particularly striking when both IRE1α and ATF6 branches of the UPR were inhibited, reducing SARS-CoV-2 virion release (~1,000-fold). Together, these data highlight the UPR as a promising antiviral target to combat coronavirus infection.
Journal Article
Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2018)
by
Kropinski, Andrew M
,
Knowles, Nick J
,
Harrison, Robert L
in
Biodiversity
,
Biomedical and Life Sciences
,
Biomedicine
2018
This article lists the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses in February 2018. A total of 451 species, 69 genera, 11 subfamilies, 9 families and one new order were added to the taxonomy. The current totals at each taxonomic level now stand at 9 orders, 131 families, 46 subfamilies, 803 genera and 4853 species. A change was made to the International Code of Virus Classification and Nomenclature to allow the use of the names of people in taxon names under appropriate circumstances. An updated Master Species List incorporating the approved changes was released in March 2018
Journal Article
Changes to virus taxonomy and the ICTV Statutes ratified by the International Committee on Taxonomy of Viruses (2023)
by
Smith, Donald B
,
Siddell, Stuart G
,
Łobocka, Małgorzata
in
Gene transfer
,
Genera
,
Nomenclature
2023
This article reports changes to virus taxonomy and taxon nomenclature that were approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in April 2023. The entire ICTV membership was invited to vote on 174 taxonomic proposals that had been approved by the ICTV Executive Committee in July 2022, as well as a proposed revision of the ICTV Statutes. All proposals and the revised ICTV Statutes were approved by a majority of the voting membership. Of note, the ICTV continued the process of renaming existing species in accordance with the recently mandated binomial format and included gene transfer agents (GTAs) in the classification framework by classifying them as viriforms. In total, one class, seven orders, 31 families, 214 genera, and 858 species were created.
Journal Article
Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2016)
by
Kropinski, Andrew M
,
Knowles, Nick J
,
Siddell, Stuart G
in
Biomedical and Life Sciences
,
Biomedicine
,
Classification
2016
This article lists the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in April 2016.Changes to virus taxonomy (the Universal Scheme of Virus Classification of the International Committee on Taxonomy of Viruses [ICTV]) now take place annually and are the result of a multi-stage process. In accordance with the ICTV Statutes (http://www.ictvonline.org/statutes.asp), proposals submitted to the ICTV Executive Committee (EC) undergo a review process that involves input from the ICTV Study Groups (SGs) and Subcommittees (SCs), other interested virologists, and the EC. After final approval by the EC, proposals are then presented for ratification to the full ICTV membership by publication on an ICTV web site (http://www.ictvonline.org/) followed by an electronic vote. The latest set of proposals approved by the EC was made available on the ICTV website by January 2016 (https://talk.ictvonline.org/files/proposals/). A list of these proposals was then emailed on 28 March 2016 to the 148 members of ICTV, namely the EC Members, Life Members, ICTV Subcommittee Members (including the SG chairs) and ICTV National Representatives. Members were then requested to vote on whether to ratify the taxonomic proposals (voting closed on 29 April 2016).
Journal Article
50 years of the International Committee on Taxonomy of Viruses: progress and prospects
by
Kropinski, Andrew M
,
Knowles, Nick J
,
Varsani, Arvind"Estimation of height of eucalyptus trees with neuroevolution of augmenting topologies (NEAT)"
in
Anniversaries
,
Biodiversity
,
Biomedical and Life Sciences
2017
We mark the 50th anniversary of the International Committee on Taxonomy of Viruses (ICTV) by presenting a brief history of the organization since its foundation, showing how it has adapted to advancements in our knowledge of virus diversity and the methods used to characterize it. We also outline recent developments, supported by a grant from the Wellcome Trust (UK), that are facilitating substantial changes in the operations of the ICTV and promoting dialogue with the virology community. These developments will generate improved online resources, including a freely available and regularly updated ICTV Virus Taxonomy Report. They also include a series of meetings between the ICTV and the broader community focused on some of the major challenges facing virus taxonomy, with the outcomes helping to inform the future policy and practice of the ICTV.
Journal Article
Changes to virus taxonomy and the ICTV Statutes ratified by the International Committee on Taxonomy of Viruses (2024)
2024
This article reports changes to virus taxonomy and taxon nomenclature that were approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in April 2024. The entire ICTV membership was invited to vote on 203 taxonomic proposals that had been approved by the ICTV Executive Committee (EC) in July 2023 at the 55th EC meeting in Jena, Germany, or in the second EC vote in November 2023. All proposals were ratified by online vote. Taxonomic additions include one new phylum (Ambiviricota), one new class, nine new orders, three new suborders, 51 new families, 18 new subfamilies, 820 new genera, and 3547 new species (excluding taxa that have been abolished). Proposals to complete the process of species name replacement to the binomial (genus + species epithet) format were ratified. Currently, a total of 14,690 virus species have been established.
Journal Article