Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4
result(s) for
"Siddique, Sunzida"
Sort by:
Survey on Machine Learning Biases and Mitigation Techniques
by
Gupta, Kishor Datta
,
George, Roy
,
Gupta, Debashis
in
Algorithms
,
Artificial intelligence
,
Bias
2024
Machine learning (ML) has become increasingly prevalent in various domains. However, ML algorithms sometimes give unfair outcomes and discrimination against certain groups. Thereby, bias occurs when our results produce a decision that is systematically incorrect. At various phases of the ML pipeline, such as data collection, pre-processing, model selection, and evaluation, these biases appear. Bias reduction methods for ML have been suggested using a variety of techniques. By changing the data or the model itself, adding more fairness constraints, or both, these methods try to lessen bias. The best technique relies on the particular context and application because each technique has advantages and disadvantages. Therefore, in this paper, we present a comprehensive survey of bias mitigation techniques in machine learning (ML) with a focus on in-depth exploration of methods, including adversarial training. We examine the diverse types of bias that can afflict ML systems, elucidate current research trends, and address future challenges. Our discussion encompasses a detailed analysis of pre-processing, in-processing, and post-processing methods, including their respective pros and cons. Moreover, we go beyond qualitative assessments by quantifying the strategies for bias reduction and providing empirical evidence and performance metrics. This paper serves as an invaluable resource for researchers, practitioners, and policymakers seeking to navigate the intricate landscape of bias in ML, offering both a profound understanding of the issue and actionable insights for responsible and effective bias mitigation.
Journal Article
UAV (Unmanned Aerial Vehicle): Diverse Applications of UAV Datasets in Segmentation, Classification, Detection, and Tracking
by
Gupta, Kishor Datta
,
Kamal, Marufa
,
Rahman, Md. Mahfuzur
in
action recognition
,
Air pollution
,
Classification
2024
Unmanned Aerial Vehicles (UAVs) have transformed the process of data collection and analysis in a variety of research disciplines, delivering unparalleled adaptability and efficacy. This paper presents a thorough examination of UAV datasets, emphasizing their wide range of applications and progress. UAV datasets consist of various types of data, such as satellite imagery, images captured by drones, and videos. These datasets can be categorized as either unimodal or multimodal, offering a wide range of detailed and comprehensive information. These datasets play a crucial role in disaster damage assessment, aerial surveillance, object recognition, and tracking. They facilitate the development of sophisticated models for tasks like semantic segmentation, pose estimation, vehicle re-identification, and gesture recognition. By leveraging UAV datasets, researchers can significantly enhance the capabilities of computer vision models, thereby advancing technology and improving our understanding of complex, dynamic environments from an aerial perspective. This review aims to encapsulate the multifaceted utility of UAV datasets, emphasizing their pivotal role in driving innovation and practical applications in multiple domains.
Journal Article
Physics Guided Neural Networks with Knowledge Graph
by
Gupta, Kishor Datta
,
George, Roy
,
Kamal, Marufa
in
Autonomous vehicles
,
Aviation
,
Climate change
2024
Over the past few decades, machine learning (ML) has demonstrated significant advancements in all areas of human existence. Machine learning and deep learning models rely heavily on data. Typically, basic machine learning (ML) and deep learning (DL) models receive input data and its matching output. Within the model, these models generate rules. In a physics-guided model, input and output rules are provided to optimize the model’s learning, hence enhancing the model’s loss optimization. The concept of the physics-guided neural network (PGNN) is becoming increasingly popular among researchers and industry professionals. It has been applied in numerous fields such as healthcare, medicine, environmental science, and control systems. This review was conducted using four specific research questions. We obtained papers from six different sources and reviewed a total of 81 papers, based on the selected keywords. In addition, we have specifically addressed the difficulties and potential advantages of the PGNN. Our intention is for this review to provide guidance for aspiring researchers seeking to obtain a deeper understanding of the PGNN.
Journal Article
UAV (Unmanned Aerial Vehicles): Diverse Applications of UAV Datasets in Segmentation, Classification, Detection, and Tracking
by
Rakib Hossain Rifat
,
Rahman, Md Mahfuzur
,
Siddique, Sunzida
in
Computer vision
,
Damage assessment
,
Datasets
2024
Unmanned Aerial Vehicles (UAVs), have greatly revolutionized the process of gathering and analyzing data in diverse research domains, providing unmatched adaptability and effectiveness. This paper presents a thorough examination of Unmanned Aerial Vehicle (UAV) datasets, emphasizing their wide range of applications and progress. UAV datasets consist of various types of data, such as satellite imagery, images captured by drones, and videos. These datasets can be categorized as either unimodal or multimodal, offering a wide range of detailed and comprehensive information. These datasets play a crucial role in disaster damage assessment, aerial surveillance, object recognition, and tracking. They facilitate the development of sophisticated models for tasks like semantic segmentation, pose estimation, vehicle re-identification, and gesture recognition. By leveraging UAV datasets, researchers can significantly enhance the capabilities of computer vision models, thereby advancing technology and improving our understanding of complex, dynamic environments from an aerial perspective. This review aims to encapsulate the multifaceted utility of UAV datasets, emphasizing their pivotal role in driving innovation and practical applications in multiple domains.