Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
23 result(s) for "Siegel, Georg"
Sort by:
Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells
Background Mesenchymal stromal cells (MSCs) are attractive for cell-based therapies ranging from regenerative medicine and tissue engineering to immunomodulation. However, clinical efficacy is variable and it is unclear how the phenotypes defining bone marrow (BM)-derived MSCs as well as donor characteristics affect their functional properties. Methods BM-MSCs were isolated from 53 (25 female, 28 male; age: 13 to 80 years) donors and analyzed by: (1) phenotype using flow cytometry and cell size measurement; (2) in vitro growth kinetics using population doubling time; (3) colony formation capacity and telomerase activity; and (4) function by in vitro differentiation capacity, suppression of T cell proliferation, cytokines and trophic factors secretion, and hormone and growth factor receptor expression. Additionally, expression of Oct4 , Nanog , Prdm14 and SOX2 mRNA was compared to pluripotent stem cells. Results BM-MSCs from younger donors showed increased expression of MCAM, VCAM-1, ALCAM, PDGFRβ, PDL-1, Thy1 and CD71, and led to lower IL-6 production when co-cultured with activated T cells. Female BM-MSCs showed increased expression of IFN-γR1 and IL-6β, and were more potent in T cell proliferation suppression. High-clonogenic BM-MSCs were smaller, divided more rapidly and were more frequent in BM-MSC preparations from younger female donors. CD10, β1integrin, HCAM, CD71, VCAM-1, IFN-γR1, MCAM, ALCAM, LNGFR and HLA ABC were correlated to BM-MSC preparations with high clonogenic potential and expression of IFN-γR1, MCAM and HLA ABC was associated with rapid growth of BM-MSCs. The mesodermal differentiation capacity of BM-MSCs was unaffected by donor age or gender but was affected by phenotype (CD10, IFN-γR1, GD2). BM-MSCs from female and male donors expressed androgen receptor and FGFR3, and secreted VEGF-A, HGF, LIF, Angiopoietin-1, basic fibroblast growth factor (bFGF) and NGFB. HGF secretion correlated negatively to the expression of CD71, CD140b and Galectin 1. The expression of Oct4, Nanog and Prdm14 mRNA in BM-MSCs was much lower compared to pluripotent stem cells and was not related to donor age or gender. Prdm14 mRNA expression correlated positively to the clonogenic potential of BM-MSCs . Conclusions By identifying donor-related effects and assigning phenotypes of BM-MSC preparations to functional properties, we provide useful tools for assay development and production for clinical applications of BM-MSC preparations.
Functional investigations on human mesenchymal stem cells exposed to magnetic fields and labeled with clinically approved iron nanoparticles
For clinical applications of mesenchymal stem cells (MSCs), labeling and tracking is crucial to evaluate cell distribution and homing. Magnetic resonance imaging (MRI) has been successfully established detecting MSCs labeled with superparamagnetic particles of iron oxide (SPIO). Despite initial reports that labeling of MSCs with SPIO is safe without affecting the MSC's biology, recent studies report on influences of SPIO-labeling on metabolism and function of MSCs. Exposition of cells and tissues to high magnetic fields is the functional principle of MRI. In this study we established innovative labeling protocols for human MSCs using clinically established SPIO in combination with magnetic fields and investigated on functional effects (migration assays, quantification of colony forming units, analyses of gene and protein expression and analyses on the proliferation capacity, the viability and the differentiation potential) of magnetic fields on unlabeled and labeled human MSCs. To evaluate the imaging properties, quantification of the total iron load per cell (TIL), electron microscopy, and MRI at 3.0 T were performed. Human MSCs labeled with SPIO permanently exposed to magnetic fields arranged and grew according to the magnetic flux lines. Exposure of MSCs to magnetic fields after labeling with SPIO significantly enhanced the TIL compared to SPIO labeled MSCs without exposure to magnetic fields resulting in optimized imaging properties (detection limit: 1,000 MSCs). Concerning the TIL and the imaging properties, immediate exposition to magnetic fields after labeling was superior to exposition after 24 h. On functional level, exposition to magnetic fields inhibited the ability of colony formation of labeled MSCs and led to an enhanced expression of lipoprotein lipase and peroxisome proliferator-activated receptor-g in labeled MSCs under adipogenic differentiation, and to a reduced expression of alkaline phosphatase in unlabeled MSCs under osteogenic differentiation as detected by qRT-PCR. Moreover, microarray analyses revealed that exposition of labeled MSCs to magnetic fields led to an up regulation of CD93 mRNA and cadherin 7 mRNA and to a down regulation of Zinc finger FYVE domain mRNA. Exposition of unlabeled MSCs to magnetic fields led to an up regulation of CD93 mRNA, lipocalin 6 mRNA, sialic acid acetylesterase mRNA, and olfactory receptor mRNA and to a down regulation of ubiquilin 1 mRNA. No influence of the exposition to magnetic fields could be observed on the migration capacity, the viability, the proliferation rate and the chondrogenic differentiation capacity of labeled or unlabeled MSCs. In our study an innovative labeling protocol for tracking MSCs by MRI using SPIO in combination with magnetic fields was established. Both, SPIO and the static magnetic field were identified as independent factors which affect the functional biology of human MSCs. Further in vivo investigations are needed to elucidate the molecular mechanisms of the interaction of magnetic fields with stem cell biology.
Saccharomyces cerevisiae goes through distinct metabolic phases during its replicative lifespan
A comprehensive description of the phenotypic changes during cellular aging is key towards unraveling its causal forces. Previously, we mapped age-related changes in the proteome and transcriptome (Janssens et al., 2015). Here, employing the same experimental procedure and model-based inference, we generate a comprehensive account of metabolic changes during the replicative life of Saccharomyces cerevisiae. With age, we found decreasing metabolite levels, decreasing growth and substrate uptake rates accompanied by a switch from aerobic fermentation to respiration, with glycerol and acetate production. The identified metabolic fluxes revealed an increase in redox cofactor turnover, likely to combat increased production of reactive oxygen species. The metabolic changes are possibly a result of the age-associated decrease in surface area per cell volume. With metabolism being an important factor of the cellular phenotype, this work complements our recent mapping of the transcriptomic and proteomic changes towards a holistic description of the cellular phenotype during aging.
Macromolecular modeling and design in Rosetta: recent methods and frameworks
The Rosetta software for macromolecular modeling, docking and design is extensively used in laboratories worldwide. During two decades of development by a community of laboratories at more than 60 institutions, Rosetta has been continuously refactored and extended. Its advantages are its performance and interoperability between broad modeling capabilities. Here we review tools developed in the last 5 years, including over 80 methods. We discuss improvements to the score function, user interfaces and usability. Rosetta is available at http://www.rosettacommons.org . This Perspective reviews tools developed over the past five years in the macromolecular modeling, docking and design software Rosetta.
The serum proteome of VA-ECMO patients changes over time and allows differentiation of survivors and non-survivors: an observational study
Background Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is applied in patients with refractory hemodynamic failure. Exposure of blood components to high shear stress and the large extracorporeal surfaces in the ECMO circuit trigger a complex inflammatory response syndrome and coagulopathy which are believed to worsen the already poor prognosis of these patients. Mass spectrometry-based proteomics allow a detailed characterization of the serum proteome as it provides the identity and concentration of large numbers of individual proteins at the same time. In this study, we aimed to characterize the serum proteome of patients receiving VA-ECMO. Methods Serum samples were collected on day 1 and day 3 after initiation of VA-ECMO. Samples underwent immunoaffinity based depletion for the 14 most abundant serum proteins, in-solution digestion and PreOmics clean-up. A spectral library was built with multiple measurements of a master-mix sample using variable mass windows. Individual samples were measured in data independent acquisition (DIA) mode. Raw files were analyzed by DIA-neural network. Unique proteins were log transformed and quantile normalized. Differential expression analysis was conducted with the LIMMA—R package. ROAST was applied to generate gene ontology enrichment analyses. Results Fourteen VA-ECMO patients and six healthy controls were recruited. Seven patients survived. Three hundred and fifty-one unique proteins were identified. One hundred and thirty-seven proteins were differentially expressed between VA-ECMO patients and controls. One hundred and forty-five proteins were differentially expressed on day 3 compared to day 1. Many of the differentially expressed proteins were involved in coagulation and the inflammatory response. The serum proteomes of survivors and non-survivors on day 3 differed from each other according to partial least-squares discriminant analysis (PLS-DA) and 48 proteins were differentially expressed. Many of these proteins have also been ascribed to processes in coagulation and inflammation (e.g., Factor IX, Protein-C, Kallikrein, SERPINA10, SEMA4B, Complement C3, Complement Factor D and MASP-1). Conclusion The serum proteome of VA-ECMO patients displays major changes compared to controls and changes from day 1 until day 3. Many changes in the serum proteome are related to inflammation and coagulation. Survivors and non-survivors can be differentiated according to their serum proteomes using PLS-DA analysis on day 3. Our results build the basis for future studies using mass-spectrometry based serum proteomics as a tool to identify novel prognostic biomarkers. Trial registration : DRKS00011106.
Early platelet dysfunction in patients receiving extracorporeal membrane oxygenation is associated with mortality
Extracorporeal membrane oxygenation (ECMO) is used for patients with cardiopulmonary failure and is associated with severe bleeding and poor outcome. Platelet dysfunction may be a contributing factor. The aim of this prospective observational study was to characterize platelet dysfunction and its relation to outcome in ECMO patients. Blood was sampled from thirty ECMO patients at three timepoints. Expression of CD62P, CD63, activated GPIIb/IIIa, GPVI, GPIbα and formation platelet-leukocyte aggregates (PLA) were analyzed at rest and in response to stimulation. Delta granule storage-pool deficiency and secretion defects were also investigated. Fifteen healthy volunteers and ten patients with coronary artery disease served as controls. Results were also compared between survivors and non-survivors. Compared to controls, expression of platelet surface markers, delta granule secretion and formation of PLA was reduced, particularly in response to stimulation. Baseline CD63 expression was higher and activated GPIIb/IIIa expression in response to stimulation was lower in non-survivors on day 1 of ECMO. Logistic regression analysis revealed that these markers were associated with mortality. In conclusion, platelets from ECMO patients are severely dysfunctional predisposing patients to bleeding complications and poor outcome. Platelet dysfunction on day 1 of ECMO detected by the platelet surface markers CD63 and activated GPIIb/IIIa is associated with mortality. CD63 and activated GPIIb/IIIa may therefore serve as novel prognostic biomarkers, but future studies are required to determine their true potential.
Clinical Relevance of Pathogens Detected by Multiplex PCR in Blood of Very-Low-Birth Weight Infants with Suspected Sepsis – Multicentre Study of the German Neonatal Network
In the German Neonatal Network (GNN) 10% of very-low-birth weight infants (VLBWI) suffer from blood-culture confirmed sepsis, while 30% of VLBWI develop clinical sepsis. Diagnosis of sepsis is a difficult task leading to potential over-treatment with antibiotics. This study aims to investigate whether the results of blood multiplex-PCR (SeptiFast®) for common sepsis pathogens are relevant for clinical decision making when sepsis is suspected in VLBWI. We performed a prospective, multi-centre study within the GNN including 133 VLBWI with 214 episodes of suspected late onset sepsis (LOS). In patients with suspected sepsis a multiplex-PCR (LightCycler SeptiFast MGRADE-test®) was performed from 100 μl EDTA blood in addition to center-specific laboratory biomarkers. The attending neonatologist documented whether the PCR-result, which was available after 24 to 48 hrs, had an impact on the choice of antibiotic drugs and duration of therapy. PCR was positive in 110/214 episodes (51%) and blood culture (BC) was positive in 55 episodes (26%). Both methods yielded predominantly coagulase-negative staphylococci (CoNS) followed by Escherichia coli and Staphylococcus aureus. In 214 BC-PCR paired samples concordant results were documented in 126 episodes (59%; n = 32 were concordant pathogen positive results, n = 94 were negative in both methods). In 65 episodes (30%) we found positive PCR results but negative BCs, with CoNS being identified in 43 (66%) of these samples. Multiplex-PCR results influenced clinical decision making in 30% of episodes, specifically in 18% for the choice of antimicrobial therapy and in 22% for the duration of antimicrobial therapy. Multiplex-PCR results had a moderate impact on clinical management in about one third of LOS-episodes. The main advantage of multiplex-PCR was the rapid detection of pathogens from micro-volume blood samples. In VLBWI limitations include risk of contamination, lack of resistance testing and high costs. The high rate of positive PCR results in episodes of negative BC might lead to overtreatment of infants which is associated with risk of mortality, antibiotic resistance, fungal sepsis and NEC.
Cardiomyocyte microvesicles: proinflammatory mediators after myocardial ischemia?
Myocardial infarction is a frequent complication of cardiovascular disease leading to high morbidity and mortality worldwide. Elevated C-reactive protein (CRP) levels after myocardial infarction are associated with heart failure and poor prognosis. Cardiomyocyte microvesicles (CMV) are released during hypoxic conditions and can act as mediators of intercellular communication. MicroRNA (miRNA) are short non-coding RNA which can alter cellular mRNA-translation. Microvesicles (MV) have been shown to contain distinct patterns of miRNA from their parent cells which can affect protein expression in target cells. We hypothesized that miRNA containing CMV mediate hepatic CRP expression after cardiomyocyte hypoxia. H9c2-cells were cultured and murine cardiomyocytes were isolated from whole murine hearts. H9c2- and murine cardiomyocytes were exposed to hypoxic conditions using a hypoxia chamber. Microvesicles were isolated by differential centrifugation and analysed by flow cytometry. Next-generation-sequencing was performed to determine the miRNA-expression profile in H9c2 CMV compared to their parent cells. Microvesicles were incubated with a co-culture model of the liver consisting of THP-1 macrophages and HepG2 cells. IL-6 and CRP expression in the co-culture was assessed by qPCR and ELISA. CMV contain a distinct pattern of miRNA compared to their parent cells including many inflammation-related miRNA. CMV induced IL-6 expression in THP-1 macrophages alone and CRP expression in the hepatic co-culture model. MV from hypoxic cardiomyocytes can mediate CRP expression in a hepatic co-culture model. Further studies will have to show whether these effects are reproducible in-vivo.
Ensuring scientific reproducibility in bio-macromolecular modeling via extensive, automated benchmarks
Each year vast international resources are wasted on irreproducible research. The scientific community has been slow to adopt standard software engineering practices, despite the increases in high-dimensional data, complexities of workflows, and computational environments. Here we show how scientific software applications can be created in a reproducible manner when simple design goals for reproducibility are met. We describe the implementation of a test server framework and 40 scientific benchmarks, covering numerous applications in Rosetta bio-macromolecular modeling. High performance computing cluster integration allows these benchmarks to run continuously and automatically. Detailed protocol captures are useful for developers and users of Rosetta and other macromolecular modeling tools. The framework and design concepts presented here are valuable for developers and users of any type of scientific software and for the scientific community to create reproducible methods. Specific examples highlight the utility of this framework, and the comprehensive documentation illustrates the ease of adding new tests in a matter of hours. Computational methods are becoming an increasingly important part of biological research. Using the Rosetta framework as an example, the authors demonstrate how community-driven development of computational methods can be done in a reproducible and reliable fashion.