Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
80 result(s) for "Sierks, H."
Sort by:
A homogeneous nucleus for comet 67P/Churyumov–Gerasimenko from its gravity field
The precise mass, bulk density, porosity and internal structure of the nucleus of comet 67P/Churyumov–Gerasimenko are calculated, on the basis of its gravity field, showing it to be dusty, homogeneous, low-density and highly porous. An 'icy dirtball' cometary nucleus We are familiar with the bright coma and characteristic dust and plasma tails of comets when observed from ground, but the nucleus itself is hidden inside the coma. Comet nuclei consist of dust and mostly water ice, but their internal structure is essentially unknown. This paper reports results from the Radio Science Investigation (RSI) experiment on the Rosetta spacecraft that provide the precise mass, bulk density, porosity and internal structure of the nucleus of comet 67P/Churyumov–Gerasimenko based on its gravity field. Results point to a low-density, highly porous nucleus containing four times more dust than ice by mass and two times more dust than ice by volume. The authors conclude that the interior of the nucleus is homogeneous and constant in density on a global scale, with no large voids. Cometary nuclei consist mostly of dust and water ice 1 . Previous observations have found nuclei to be low-density and highly porous bodies 2 , 3 , 4 , but have only moderately constrained the range of allowed densities because of the measurement uncertainties. Here we report the precise mass, bulk density, porosity and internal structure of the nucleus of comet 67P/Churyumov–Gerasimenko on the basis of its gravity field. The mass and gravity field are derived from measured spacecraft velocity perturbations at fly-by distances between 10 and 100 kilometres. The gravitational point mass is GM  = 666.2 ± 0.2 cubic metres per second squared, giving a mass M  = (9,982 ± 3) × 10 9 kilograms. Together with the current estimate of the volume of the nucleus 5 , the average bulk density of the nucleus is 533 ± 6 kilograms per cubic metre. The nucleus appears to be a low-density, highly porous (72–74 per cent) dusty body, similar to that of comet 9P/Tempel 1 2 , 3 . The most likely composition mix has approximately four times more dust than ice by mass and two times more dust than ice by volume. We conclude that the interior of the nucleus is homogeneous and constant in density on a global scale without large voids. The high porosity seems to be an inherent property of the nucleus material.
Rosetta's comet 67P/Churyumov-Gerasimenko sheds its dusty mantle to reveal its icy nature
The Rosetta spacecraft has investigated comet 67P/Churyumov-Gerasimenko from large heliocentric distances to its perihelion passage and beyond. We trace the seasonal and diurnal evolution of the colors of the 67P nucleus, finding changes driven by sublimation and recondensation of water ice. The whole nucleus became relatively bluer near perihelion, as increasing activity removed the surface dust, implying that water ice is widespread underneath the surface. We identified large (1500 square meters) ice-rich patches appearing and then vanishing in about 10 days, indicating small-scale heterogeneities on the nucleus. Thin frosts sublimating in a few minutes are observed close to receding shadows, and rapid variations in color are seen on extended areas close to the terminator. These cyclic processes are widespread and lead to continuously, slightly varying surface properties.
Vesta's Shape and Morphology
Vesta's surface is characterized by abundant impact craters, some with preserved ejecta blankets, large troughs extending around the equatorial region, enigmatic dark material, and widespread mass wasting, but as yet an absence of volcanic features. Abundant steep slopes indicate that impact-generated surface regolith is underlain by bedrock. Dawn observations confirm the large impact basin (Rheasilvia) at Vesta's south pole and reveal evidence for an earlier, underlying large basin (Veneneia). Vesta's geology displays morphological features characteristic of the Moon and terrestrial planets as well as those of other asteroids, underscoring Vesta's unique role as a transitional solar system body.
The Dawn Framing Camera
The Framing Camera (FC) is the German contribution to the Dawn mission. The camera will map 4 Vesta and 1 Ceres through a clear filter and 7 band-pass filters covering the wavelengths from the visible to the near-IR. The camera will allow the determination of the physical parameters of the asteroids, the reconstruction of their global shape as well as local topography and surface geomorphology, and provide information on composition via surface reflectance characteristics. The camera will also serve for orbit navigation. The resolution of the Framing Camera will be up to 12 m per pixel in low altitude mapping orbit at Vesta (62 m per pixel at Ceres), at an angular resolution of 93.7 μrad px −1 . The instrument uses a reclosable front door to protect the optical system and a filter-wheel mechanism to select the band-pass for observation. The detector data is read out and processed by a data processing unit. A power converter unit supplies all required power rails for operation and thermal maintenance. For redundancy reasons, two identical cameras were provided, both located side by side on the + Z -deck of the spacecraft. Each camera has a mass of 5.5 kg.
Sublimation in bright spots on (1) Ceres
The dwarf planet (1) Ceres, the largest object in the main asteroid belt, is found to have localized bright areas on its surface; particularly interesting is a bright pit on the floor of the crater Occator that exhibits what is likely to be water ice sublimation, producing crater-bound haze clouds with a diurnal rhythm. Possible ice sublimation on dwarf planet Ceres Images from NASA's Dawn orbiter spacecraft reveal localized bright areas on the surface of the dwarf planet Ceres, the largest object in the main asteroid belt. These unusual areas are consistent with the presence of hydrated magnesium sulfates mixed with dark background material, although other compositions are possible. Recent reports of water vapour, bound water and OH on Ceres raised the possibility there may be surface water there, and the new images reveal multiple bright spots on the floor of crater Occator that could be from surface ice. The largest of these, corresponding to the crater's central pit, produces haze clouds inside the crater with a diurnal rhythm, a clear indication of possible sublimation of water ice. The dwarf planet (1) Ceres, the largest object in the main asteroid belt 1 with a mean diameter of about 950 kilometres, is located at a mean distance from the Sun of about 2.8 astronomical units (one astronomical unit is the Earth–Sun distance). Thermal evolution models suggest that it is a differentiated body with potential geological activity 2 , 3 . Unlike on the icy satellites of Jupiter and Saturn, where tidal forces are responsible for spewing briny water into space, no tidal forces are acting on Ceres. In the absence of such forces, most objects in the main asteroid belt are expected to be geologically inert. The recent discovery 4 of water vapour absorption near Ceres and previous detection of bound water and OH near and on Ceres (refs 5 , 6 , 7 ) have raised interest in the possible presence of surface ice. Here we report the presence of localized bright areas on Ceres from an orbiting imager 8 . These unusual areas are consistent with hydrated magnesium sulfates mixed with dark background material, although other compositions are possible. Of particular interest is a bright pit on the floor of crater Occator that exhibits probable sublimation of water ice, producing haze clouds inside the crater that appear and disappear with a diurnal rhythm. Slow-moving condensed-ice or dust particles 9 , 10 may explain this haze. We conclude that Ceres must have accreted material from beyond the ‘snow line’ 11 , which is the distance from the Sun at which water molecules condense.
Asteroid 21 Lutetia: Low Mass, High Density
Asteroid 21 Lutetia was approached by the Rosetta spacecraft on 10 July 2010. The additional Doppler shift of the spacecraft radio signals imposed by 21 Lutetia's gravitational perturbation on the flyby trajectory were used to determine the mass of the asteroid. Calibrating and correcting for all Doppler contributions not associated with Lutetia, a least-squares fit to the residual frequency observations from 4 hours before to 6 hours after closest approach yields a mass of (1.700 ± 0.017) × 10¹ɸ kilograms. Using the volume model of Lutetia determined by the Rosetta Optical, Spectroscopie, and Infrared Remote Imaging System (OSIRIS) camera, the bulk density, an important parameter for clues to its composition and interior, is (3.4 ± 0.3) × 10³ kilograms per cubic meter.
Bilobate comet morphology and internal structure controlled by shear deformation
Bilobate comets—small icy bodies with two distinct lobes—are a common configuration among comets, but the factors shaping these bodies are largely unknown. Cometary nuclei, the solid centres of comets, erode by ice sublimation when they are sufficiently close to the Sun, but the importance of a comet’s internal structure on its erosion is unclear. Here we present three-dimensional analyses of images from the Rosetta mission to illuminate the process that shaped the Jupiter-family bilobate comet 67P/Churyumov–Gerasimenko over billions of years. We show that the comet’s surface and interior exhibit shear-fracture and fault networks, on spatial scales of tens to hundreds of metres. Fractures propagate up to 500 m below the surface through a mechanically homogeneous material. Through fracture network analysis and stress modelling, we show that shear deformation generates fracture networks that control mechanical surface erosion, particularly in the strongly marked neck trough of 67P/Churyumov–Gerasimenko, exposing its interior. We conclude that shear deformation shapes and structures the surface and interior of bilobate comets, particularly in the outer Solar System where water ice sublimation is negligible.The shape and internal structure of bilobate comet 67P is controlled by shear deformation inducing mechanically driven erosion along shear fracture networks, according to a 3D analysis of images from the Rosetta mission.
E-Type Asteroid (2867) Steins as Imaged by OSIRIS on Board Rosetta
The European Space Agency's Rosetta mission encountered the main-belt asteroid (2867) Steins while on its way to rendezvous with comet 67P/Churyumov-Gerasimenko. Images taken with the OSIRIS (optical, spectroscopic, and infrared remote imaging system) cameras on board Rosetta show that Steins is an oblate body with an effective spherical diameter of 5.3 kilometers. Its surface does not show color variations. The morphology of Steins is dominated by linear faults and a large 2.1-kilometer-diameter crater near its south pole. Crater counts reveal a distinct lack of small craters. Steins is not solid rock but a rubble pile and has a conical appearance that is probably the result of reshaping due to Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) spin-up. The OSIRIS images constitute direct evidence for the YORP effect on a main-belt asteroid.
The Dawn Topography Investigation
The objective of the Dawn topography investigation is to derive the detailed shapes of 4 Vesta and 1 Ceres in order to create orthorectified image mosaics for geologic interpretation, as well as to study the asteroids' landforms, interior structure, and the processes that have modified their surfaces over geologic time. In this paper we describe our approaches for producing shape models, plans for acquiring the needed image data for Vesta, and the results of a numerical simulation of the Vesta mapping campaign that quantify the expected accuracy of our results. Multi-angle images obtained by Dawn's framing camera will be used to create topographic models with 100 m/pixel horizontal resolution and 10 m height accuracy at Vesta, and 200 m/pixel horizontal resolution and 20 m height accuracy at Ceres. Two different techniques, stereophotogrammetry and stereophotoclinometry, are employed to model the shape; these models will be merged with the asteroidal gravity fields obtained by Dawn to produce geodetically controlled topographic models for each body. The resulting digital topography models, together with the gravity data, will reveal the tectonic, volcanic and impact history of Vesta, and enable co-registration of data sets to determine Vesta's geologic history. At Ceres, the topography will likely reveal much about processes of surface modification as well as the internal structure and evolution of this dwarf planet.
Coma morphology of comet 67P controlled by insolation over irregular nucleus
While the structural complexity of cometary comae is already recognizable from telescopic observations 1 , the innermost region, within a few radii of the nucleus, was not resolved until spacecraft exploration became a reality 2 , 3 . The dust coma displays jet-like features of enhanced brightness superposed on a diffuse background 1 , 4 , 5 . Some features can be traced to specific areas on the nucleus, and result conceivably from locally enhanced outgassing and/or dust emission 6 – 8 . However, diffuse or even uniform activity over topographic concavity can converge to produce jet-like features 9 , 10 . Therefore, linking observed coma morphology to the distribution of activity on the nucleus is difficult 11 , 12 . Here, we study the emergence of dust activity at sunrise on comet 67P/Churyumov–Gerasimenko using high-resolution, stereo images from the OSIRIS camera onboard the Rosetta spacecraft, where the sources and formation of the jet-like features are resolved. We perform numerical simulations to show that the ambient dust coma is driven by pervasive but non-uniform water outgassing from the homogeneous surface layer. Physical collimations of gas and dust flows occur at local maxima of insolation and also via topographic focusing. Coma structures are projected to exhibit jet-like features that vary with the perspective of the observer. For an irregular comet such as 67P/Churyumov–Gerasimenko, near-nucleus coma structures can be concealed in the shadow of the nucleus, which further complicates the picture. Images of 67P's nucleus from the Rosetta spacecraft, together with numerical simulations, show that the jet-like features of cometary comae can be produced by diffuse activity focused by the nucleus topography as well as non-uniform insolation over the surface.