Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3
result(s) for
"Sigwalt, Anastasie"
Sort by:
Large-Scale Survey of Intraspecific Fitness and Cell Morphology Variation in a Protoploid Yeast Species
by
de Montigny, Jacky
,
Sigwalt, Anastasie
,
Ohnuki, Shinsuke
in
Genetic diversity
,
Morphology
,
Yeast
2016
It is now clear that the exploration of the genetic and phenotypic diversity of nonmodel species greatly improves our knowledge in biology. In this context, we recently launched a population genomic analysis of the protoploid yeast Lachancea kluyveri (formerly Saccharomyces kluyveri), highlighting a broad genetic diversity (π = 17 × 10−3) compared to the yeast model organism, S. cerevisiae (π = 4 × 10−3). Here, we sought to generate a comprehensive view of the phenotypic diversity in this species. In total, 27 natural L. kluyveri isolates were subjected to trait profiling using the following independent approaches: (i) analyzing growth in 55 growth conditions and (ii) investigating 501 morphological changes at the cellular level. Despite higher genetic diversity, the fitness variance observed in L. kluyveri is lower than that in S. cerevisiae. However, morphological features show an opposite trend. In addition, there is no correlation between the origins (ecological or geographical) of the isolate and the phenotypic patterns, demonstrating that trait variation follows neither population history nor source environment in L. kluyveri. Finally, pairwise comparisons between growth rate correlation and genetic diversity show a clear decrease in phenotypic variability linked to genome variation increase, whereas no such a trend was identified for morphological changes. Overall, this study reveals for the first time the phenotypic diversity of a distantly related species to S. cerevisiae. Given its genetic properties, L. kluyveri might be useful in further linkage mapping analyses of complex traits, and could ultimately provide a better insight into the evolution of the genotype–phenotype relationship across yeast species.
Journal Article
Genome evolution across 1,011 Saccharomyces cerevisiae isolates
by
Cruaud, Corinne
,
Llored, Agnès
,
Barbry, Pascal
in
45/23
,
631/208/212/2304
,
631/208/726/649/2219
2018
Large-scale population genomic surveys are essential to explore the phenotypic diversity of natural populations. Here we report the whole-genome sequencing and phenotyping of 1,011
Saccharomyces cerevisiae
isolates, which together provide an accurate evolutionary picture of the genomic variants that shape the species-wide phenotypic landscape of this yeast. Genomic analyses support a single ‘out-of-China’ origin for this species, followed by several independent domestication events. Although domesticated isolates exhibit high variation in ploidy, aneuploidy and genome content, genome evolution in wild isolates is mainly driven by the accumulation of single nucleotide polymorphisms. A common feature is the extensive loss of heterozygosity, which represents an essential source of inter-individual variation in this mainly asexual species. Most of the single nucleotide polymorphisms, including experimentally identified functional polymorphisms, are present at very low frequencies. The largest numbers of variants identified by genome-wide association are copy-number changes, which have a greater phenotypic effect than do single nucleotide polymorphisms. This resource will guide future population genomics and genotype–phenotype studies in this classic model system.
Whole-genome sequencing of 1,011 natural isolates of the yeast Saccharomyces cerevisiae reveals its evolutionary history, including a single out-of-China origin and multiple domestication events, and provides a framework for genotype–phenotype studies in this model organism.
Journal Article
The hidden complexity of Mendelian traits across yeast natural populations
by
Sigwalt, Anastasie
,
Dunham, Maitreya
,
De Montigny, Jacky
in
Drug resistance
,
Genetic crosses
,
Genomics
2016
Mendelian traits are considered as the lower end of the complexity spectrum of heritable phenotypes. However, more than a century after the rediscovery of Mendel's law, the global landscape of monogenic variants as well as their effects and inheritance patterns within natural populations is still not well understood. Using the yeast Saccharomyces cerevisiae, we performed a species-wide survey of Mendelian traits across a large population of isolates. We generated offspring from 41 unique parental pairs, and analyzed 1,105 cross/trait combinations. We found that 8.9% of the cases were Mendelian. Most were caused by common variants showing stable inheritances in a natural population. However, we also found that a rare monogenic variant related to drug resistance displayed a significant and variable expressivity across different genetic backgrounds, leading to modified inheritances ranging from intermediate to high complexities. Our results illustrate for the first time the continuum of the hidden complexity of a monogenic mutation, where genotype is hardly predictive of phenotype.