Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5,392
result(s) for
"Silva, L O"
Sort by:
Chikungunya virus infection disrupts MHC-I antigen presentation via nonstructural protein 2
by
Parks, M. Guston
,
Ware, Brian C.
,
da Silva, Mariana O. L.
in
Analysis
,
Ankle
,
Antigen presentation
2024
Infection by chikungunya virus (CHIKV), a mosquito-borne alphavirus, causes severe polyarthralgia and polymyalgia, which can last in some people for months to years. Chronic CHIKV disease signs and symptoms are associated with the persistence of viral nucleic acid and antigen in tissues. Like humans and nonhuman primates, CHIKV infection in mice results in the development of robust adaptive antiviral immune responses. Despite this, joint tissue fibroblasts survive CHIKV infection and can support persistent viral replication, suggesting that they escape immune surveillance. Here, using a recombinant CHIKV strain encoding the fluorescent protein VENUS with an embedded CD8 + T cell epitope, SIINFEKL, we observed a marked loss of both MHC class I (MHC-I) surface expression and antigen presentation by CHIKV-infected joint tissue fibroblasts. Both in vivo and ex vivo infected joint tissue fibroblasts displayed reduced cell surface levels of H2-K b and H2-D b MHC-I proteins while maintaining similar levels of other cell surface proteins. Mutations within the methyl transferase-like domain of the CHIKV nonstructural protein 2 (nsP2) increased MHC-I cell surface expression and antigen presentation efficiency by CHIKV-infected cells. Moreover, expression of WT nsP2 alone, but not nsP2 with mutations in the methyltransferase-like domain, resulted in decreased MHC-I antigen presentation efficiency. MHC-I surface expression and antigen presentation was rescued by replacing VENUS-SIINFEKL with SIINFEKL tethered to β2-microglobulin in the CHIKV genome, which bypasses the requirement for peptide processing and TAP-mediated peptide transport into the endoplasmic reticulum. Collectively, this work suggests that CHIKV escapes the surveillance of antiviral CD8 + T cells, in part, by nsP2-mediated disruption of MHC-I antigen presentation.
Journal Article
Scaling laws for direct laser acceleration in a radiation-reaction dominated regime
by
Vranic, M
,
Jirka, M
,
Grismayer, T
in
direct laser acceleration
,
Electron acceleration
,
Electron energy
2020
We study electron acceleration within a sub-critical plasma channel irradiated by an ultra-intense laser pulse (a0 > 100 or I > 1022 W cm−2). In this regime, radiation reaction significantly alters the electron dynamics. This has an effect not only on the maximum attainable electron energy but also on the phase-matching process between betatron motion and electron oscillations in the laser field. Our study encompasses analytical description, test-particle calculations and two-dimensional particle-in-cell simulations. We show single-stage electron acceleration to multi-GeV energies within a 0.5 mm-long channel and provide guidelines how to obtain energies beyond 10 GeV using optimal initial configurations. We present the required conditions in a form of explicit analytical scaling laws that can be applied to plan the future electron acceleration experiments.
Journal Article
Generation of neutral and high-density electron–positron pair plasmas in the laboratory
2015
Electron–positron pair plasmas represent a unique state of matter, whereby there exists an intrinsic and complete symmetry between negatively charged (matter) and positively charged (antimatter) particles. These plasmas play a fundamental role in the dynamics of ultra-massive astrophysical objects and are believed to be associated with the emission of ultra-bright gamma-ray bursts. Despite extensive theoretical modelling, our knowledge of this state of matter is still speculative, owing to the extreme difficulty in recreating neutral matter–antimatter plasmas in the laboratory. Here we show that, by using a compact laser-driven setup, ion-free electron–positron plasmas with unique characteristics can be produced. Their charge neutrality (same amount of matter and antimatter), high-density and small divergence finally open up the possibility of studying electron–positron plasmas in controlled laboratory experiments.
Electron–positron pair plasma—a state of matter with a complete symmetry between negatively and positively charged particles—are found in many astrophysical object. Here, the authors use high-power laser to create an ion-free electron–positron plasma in the laboratory.
Journal Article
Bright spatially coherent synchrotron X-rays from a table-top source
2010
Betratron oscillations of electrons driven through a plasma by a high-intensity laser generate coherent X-rays. A new study demonstrates the intensity of these X-rays can be as bright as that generated by conventional third-generation synchrotrons, in a device a fraction of the size and cost.
Each successive generation of X-ray machines has opened up new frontiers in science, such as the first radiographs and the determination of the structure of DNA. State-of-the-art X-ray sources can now produce coherent high-brightness X-rays of greater than kiloelectronvolt energy and promise a new revolution in imaging complex systems on nanometre and femtosecond scales. Despite the demand, only a few dedicated synchrotron facilities exist worldwide, in part because of the size and cost of conventional (accelerator) technology
1
. Here we demonstrate the use of a new generation of laser-driven plasma accelerators
2
, which accelerate high-charge electron beams to high energy in short distances
3
,
4
,
5
, to produce directional, spatially coherent, intrinsically ultrafast beams of hard X-rays. This reduces the size of the synchrotron source from the tens of metres to the centimetre scale, simultaneously accelerating and wiggling the electron beam. The resulting X-ray source is 1,000 times brighter than previously reported plasma wigglers
6
,
7
and thus has the potential to facilitate a myriad of uses across the whole spectrum of light-source applications.
Journal Article
Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering
by
Trines, R. M. G. M.
,
Fonseca, R. A.
,
Vieira, J.
in
639/301/1019/1020/1088
,
639/766/1960
,
639/766/483/640
2016
Twisted Laguerre–Gaussian lasers, with orbital angular momentum and characterized by doughnut-shaped intensity profiles, provide a transformative set of tools and research directions in a growing range of fields and applications, from super-resolution microcopy and ultra-fast optical communications to quantum computing and astrophysics. The impact of twisted light is widening as recent numerical calculations provided solutions to long-standing challenges in plasma-based acceleration by allowing for high-gradient positron acceleration. The production of ultra-high-intensity twisted laser pulses could then also have a broad influence on relativistic laser–matter interactions. Here we show theoretically and with
ab initio
three-dimensional particle-in-cell simulations that stimulated Raman backscattering can generate and amplify twisted lasers to petawatt intensities in plasmas. This work may open new research directions in nonlinear optics and high–energy-density science, compact plasma-based accelerators and light sources.
High intensity light with a non-zero orbital angular momentum could aid the development of laser-wakefield particle accelerators. Here, the authors theoretically show that stimulated Raman backscattering in plasmas can generate and amplify orbital angular momentum lasers to petawatt intensities.
Journal Article
Stable multi-GeV electron accelerator driven by waveform-controlled PW laser pulses
2017
The achievable energy and the stability of accelerated electron beams have been the most critical issues in laser wakefield acceleration. As laser propagation, plasma wave formation and electron acceleration are highly nonlinear processes, the laser wakefield acceleration (LWFA) is extremely sensitive to initial experimental conditions. We propose a simple and elegant waveform control method for the LWFA process to enhance the performance of a laser electron accelerator by applying a fully optical and programmable technique to control the chirp of PW laser pulses. We found sensitive dependence of energy and stability of electron beams on the spectral phase of laser pulses and obtained stable 2-GeV electron beams from a 1-cm gas cell of helium. The waveform control technique for LWFA would prompt practical applications of centimeter-scale GeV-electron accelerators to a compact radiation sources in the x-ray and γ-ray regions.
Journal Article
Quantum Electrodynamics vacuum polarization solver
2021
The self-consistent modeling of vacuum polarization due to virtual electron-positron fluctuations is of relevance for many near term experiments associated with high intensity radiation sources and represents a milestone in describing scenarios of extreme energy density. We present a generalized finite-difference time-domain solver that can incorporate the modifications to Maxwell’s equations due to vacuum polarization. Our multidimensional solver reproduced in one-dimensional configurations the results for which an analytic treatment is possible, yielding vacuum harmonic generation and birefringence. The solver has also been tested for two-dimensional scenarios where finite laser beam spot sizes must be taken into account. We employ this solver to explore different types of laser configurations that can be relevant for future planned experiments aiming to detect quantum vacuum dynamics at ultra-high electromagnetic field intensities.
Journal Article
Inter-genus gene expression analysis in livestock fibroblasts using reference gene validation based upon a multi-species primer set
by
Benko-Iseppon, Ana M.
,
Oliveira, Marcos A. L.
,
Moura, Marcelo T.
in
Algorithms
,
Analysis
,
Animals
2019
Quantitative reverse transcription PCR (RT-qPCR) remains as an accurate approach for gene expression analysis but requires labor-intensive validation of reference genes using species-specific primers. To ease such demand, the aim was to design and test a multi-species primer set to validate reference genes for inter-genus RT-qPCR gene expression analysis. Primers were designed for ten housekeeping genes using transcript sequences of various livestock species. All ten gene transcripts were detected by RT-PCR in Bos taurus (cattle), Bubalus bubalis (buffaloes), Capra hircus (goats), and Ovis aries (sheep) cDNA. Primer efficiency was attained for eight reference genes using B. taurus-O. aries fibroblast cDNA (95.54-98.39%). The RT-qPCR data normalization was carried out for B. taurus vs. O. aries relative gene expression using Bestkeeper, GeNorm, Norm-finder, Delta CT method, and RefFinder algorithms. Validation of inter-genus RT-qPCR showed up-regulation of TLR4 and ZFX gene transcripts in B. taurus fibroblasts, irrespectively of normalization conditions (two, three, or four reference genes). In silico search in mammalian transcriptomes showed that the multi-species primer set is expected to amplify transcripts of at least two distinct loci in 114 species, and 79 species would be covered by six or more primers. Hence, a multi-species primer set allows for inter-genus gene expression analysis between O. aries and B. taurus fibroblasts and further reveals species-specific gene transcript abundance of key transcription factors.
Journal Article
Persistence of magnetic field driven by relativistic electrons in a plasma
2015
In laboratory experiments, strong magnetic fields at the boundary of a plasma can be generated by means of laser-wakefield acceleration, enabling the study of magnetization processes in scaled versions of astrophysical plasmas.
The onset and evolution of magnetic fields in laboratory and astrophysical plasmas is determined by several mechanisms
1
, including instabilities
2
,
3
, dynamo effects
4
,
5
and ultrahigh-energy particle flows through gas, plasma
6
,
7
and interstellar media
8
,
9
. These processes are relevant over a wide range of conditions, from cosmic ray acceleration and gamma ray bursts to nuclear fusion in stars. The disparate temporal and spatial scales where each process operates can be reconciled by scaling parameters that enable one to emulate astrophysical conditions in the laboratory. Here we unveil a new mechanism by which the flow of ultra-energetic particles in a laser-wakefield accelerator strongly magnetizes the boundary between plasma and non-ionized gas. We demonstrate, from time-resolved large-scale magnetic-field measurements and full-scale particle-in-cell simulations, the generation of strong magnetic fields up to 10–100 tesla (corresponding to nT in astrophysical conditions). These results open new paths for the exploration and modelling of ultrahigh-energy particle-driven magnetic-field generation in the laboratory.
Journal Article
All optical dual stage laser wakefield acceleration driven by two-color laser pulses
2018
We propose an all-optical dual-stage laser wakefield acceleration (LWFA), staged with co-propagating two-color laser pulses in a plasma medium, to enhance the electron bunch energy. After the depletion of the leading fundamental laser pulse that initiates self-injection and sets up the first stage particle acceleration, the subsequent second-harmonic laser pulse takes over the acceleration process and accelerates the electron bunch in the second stage over a significantly longer distance than in the first stage. In this all optical dual-stage LWFA, the electrons can gain 3 times higher energy as compared to the energy gain from the single stage LWFA driven by a single-color laser pulse with equivalent energy. Our multi-dimensional particle-in-cell simulations demonstrate that a 10-GeV electron bunch with 20-pC charge can be obtained by the two-color dual-stage LWFA using total input laser power of 0.6 PW.
Journal Article