Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
18
result(s) for
"Silversides, David W."
Sort by:
Dysregulation of cotranscriptional alternative splicing underlies CHARGE syndrome
by
Bélanger, Catherine
,
Bérubé-Simard, Félix-Antoine
,
Silversides, David W.
in
Abnormalities
,
Alternative Splicing
,
Animals
2018
CHARGE syndrome—which stands for coloboma of the eye, heart defects, atresia of choanae, retardation of growth/development, genital abnormalities, and ear anomalies—is a severe developmental disorder with wide phenotypic variability, caused mainly by mutations in CHD7 (chromodomain helicase DNA-binding protein 7), known to encode a chromatin remodeler. The genetic lesions responsible for CHD7 mutation-negative cases are unknown, at least in part because the pathogenic mechanisms underlying CHARGE syndrome remain poorly defined. Here, we report the characterization of a mouse model for CHD7 mutation-negative cases of CHARGE syndrome generated by insertional mutagenesis of Fam172a (family with sequence similarity 172, member A). We show that Fam172a plays a key role in the regulation of cotranscriptional alternative splicing, notably by interacting with Ago2 (Argonaute-2) and Chd7. Validation studies in a human cohort allow us to propose that dysregulation of cotranscriptional alternative splicing is a unifying pathogenic mechanism for both CHD7 mutation-positive and CHD7 mutation-negative cases. We also present evidence that such splicing defects can be corrected in vitro by acute rapamycin treatment.
Journal Article
Male-Biased Aganglionic Megacolon in the TashT Mouse Line Due to Perturbation of Silencer Elements in a Large Gene Desert of Chromosome 10
2015
Neural crest cells (NCC) are a transient migratory cell population that generates diverse cell types such as neurons and glia of the enteric nervous system (ENS). Via an insertional mutation screen for loci affecting NCC development in mice, we identified one line-named TashT-that displays a partially penetrant aganglionic megacolon phenotype in a strong male-biased manner. Interestingly, this phenotype is highly reminiscent of human Hirschsprung's disease, a neurocristopathy with a still unexplained male sex bias. In contrast to the megacolon phenotype, colonic aganglionosis is almost fully penetrant in homozygous TashT animals. The sex bias in megacolon expressivity can be explained by the fact that the male ENS ends, on average, around a \"tipping point\" of minimal colonic ganglionosis while the female ENS ends, on average, just beyond it. Detailed analysis of embryonic intestines revealed that aganglionosis in homozygous TashT animals is due to slower migration of enteric NCC. The TashT insertional mutation is localized in a gene desert containing multiple highly conserved elements that exhibit repressive activity in reporter assays. RNAseq analyses and 3C assays revealed that the TashT insertion results, at least in part, in NCC-specific relief of repression of the uncharacterized gene Fam162b; an outcome independently confirmed via transient transgenesis. The transcriptional signature of enteric NCC from homozygous TashT embryos is also characterized by the deregulation of genes encoding members of the most important signaling pathways for ENS formation-Gdnf/Ret and Edn3/Ednrb-and, intriguingly, the downregulation of specific subsets of X-linked genes. In conclusion, this study not only allowed the identification of Fam162b coding and regulatory sequences as novel candidate loci for Hirschsprung's disease but also provides important new insights into its male sex bias.
Journal Article
Loss of Vascular Endothelial Growth Factor A (VEGFA) Isoforms in Granulosa Cells Using pDmrt-1-Cre or Amhr2-Cre Reduces Fertility by Arresting Follicular Development and by Reducing Litter Size in Female Mice
by
Silversides, David W.
,
Clopton, Debra T.
,
Brauer, Vanessa M.
in
17β-Estradiol
,
Analysis of Variance
,
Animal sciences
2015
Because VEGFA has been implicated in follicle development, the objective of this study was to determine the effects of granulosa- and germ cell-specific VEGFA loss on ovarian morphogenesis, function, and female fertility. pDmrt1-Cre mice were mated to floxed VEGFA mice to develop granulosa-/germ cell-specific knockouts (pDmrt1-Cre;Vegfa-/-). The time from mating to first parturition was increased when pDmrt1-Cre;Vegfa-/- females were mated to control males (P = 0.0008) and tended to be longer for heterozygous females (P < 0.07). Litter size was reduced for pDmrt1-Cre;Vegfa-/- females (P < 0.007). The time between the first and second parturitions was also increased for heterozygous females (P < 0.04) and tended to be increased for pDmrt1-Cre;Vegfa-/- females (P < 0.07). pDmrt1-Cre;Vegfa-/- females had smaller ovaries (P < 0.04), reduced plasma estradiol (P < 0.007), fewer developing follicles (P < 0.008) and tended to have fewer corpora lutea (P < 0.08). Expression of Igf1r was reduced (P < 0.05); expression of Foxo3a tended to be increased (P < 0.06); and both Fshr (P < 0.1) and Sirt6 tended to be reduced (P < 0.06) in pDmrt1-Cre;Vegfa-/- ovaries. To compare VEGFA knockouts, we generated Amhr2-Cre;Vegfa-/- mice that required more time from mating to first parturition (P < 0.003) with variable ovarian size. Both lines had more apoptotic granulosa cells, and vascular staining did not appear different. Taken together these data indicate that the loss of all VEGFA isoforms in granulosa/germ cells (proangiogenic and antiangiogenic) causes subfertility by arresting follicular development, resulting in reduced ovulation rate and fewer pups per litter.
Journal Article
Upregulation of the Nr2f1 - A830082K12Rik gene pair in murine neural crest cells results in a complex phenotype reminiscent of Waardenburg syndrome type 4
by
Silversides, David W.
,
Cardinal, Tatiana
,
Charrier, Baptiste
in
Animals
,
Animals, Newborn
,
Base Sequence
2016
Waardenburg syndrome is a neurocristopathy characterized by a combination of skin and hair depigmentation, and inner ear defects. In the type 4 form, these defects show comorbidity with Hirschsprung disease, a disorder marked by an absence of neural ganglia in the distal colon, triggering functional intestinal obstruction. Here, we report that the Spot mouse line – obtained through an insertional mutagenesis screen for genes involved in neural crest cell (NCC) development – is a model for Waardenburg syndrome type 4. We found that the Spot insertional mutation causes overexpression of an overlapping gene pair composed of the transcription-factor-encoding Nr2f1 and the antisense long non-coding RNA A830082K12Rik in NCCs through a mechanism involving relief of repression of these genes. Consistent with the previously described role of Nr2f1 in promoting gliogenesis in the central nervous system, we further found that NCC-derived progenitors of the enteric nervous system fail to fully colonize Spot embryonic guts owing to their premature differentiation in glial cells. Taken together, our data thus identify silencer elements of the Nr2f1-A830082K12Rik gene pair as new candidate loci for Waardenburg syndrome type 4.
Journal Article
A collagen VI–dependent pathogenic mechanism for Hirschsprung’s disease
by
Soret, Rodolphe
,
Silversides, David W.
,
Bergeron, Karl F.
in
Animals
,
Biomedical research
,
Cell Movement
2015
Hirschsprung's disease (HSCR) is a severe congenital anomaly of the enteric nervous system (ENS) characterized by functional intestinal obstruction due to a lack of intrinsic innervation in the distal bowel. Distal innervation deficiency results from incomplete colonization of the bowel by enteric neural crest cells (eNCCs), the ENS precursors. Here, we report the generation of a mouse model for HSCR--named Holstein--that contains an untargeted transgenic insertion upstream of the collagen-6α4 (Col6a4) gene. This insertion induces eNCC-specific upregulation of Col6a4 expression that increases total collagen VI protein levels in the extracellular matrix (ECM) surrounding both the developing and the postnatal ENS. Increased collagen VI levels during development mainly result in slower migration of eNCCs. This appears to be due to the fact that collagen VI is a poor substratum for supporting eNCC migration and can even interfere with the migration-promoting effects of fibronectin. Importantly, for a majority of patients in a HSCR cohort, the myenteric ganglia from the ganglionated region are also specifically surrounded by abundant collagen VI microfibrils, an outcome accentuated by Down syndrome. Collectively, our data thus unveil a clinically relevant pathogenic mechanism for HSCR that involves cell-autonomous changes in ECM composition surrounding eNCCs. Moreover, as COL6A1 and COL6A2 are on human Chr.21q, this mechanism is highly relevant to the predisposition of patients with Down syndrome to HSCR.
Journal Article
Conserved Usage of Alternative 5′ Untranslated Exons of the GATA4 Gene
by
Silversides, David W.
,
Robert-Grenon, Jean-Philippe
,
Goodyer, Cynthia G.
in
5' Untranslated Regions - genetics
,
Aging - genetics
,
Alternative Splicing - genetics
2009
GATA4 is an essential transcription factor required for the development and function of multiple organs. Despite this important role, our knowledge of how the GATA4 gene is regulated remains limited. To better understand this regulation, we characterized the 5' region of the mouse, rat, and human GATA4 genes.
Using 5' RACE, we identified novel transcription start sites in all three species. GATA4 is expressed as multiple transcripts with varying 5' ends encoded by alternative untranslated first exons. Two of these non-coding first exons are conserved between species: exon 1a located 3.5 kb upstream of the GATA4 ATG site in exon 2, and a second first exon (exon 1b) located 28 kb further upstream. Expression of both mRNA variants was found in all GATA4-expressing organs but with a preference for the exon 1a-containing transcript. The exception was the testis where exon 1a- and 1b-containing transcripts were similarly expressed. In some tissues such as the intestine, alternative transcript expression appears to be regionally regulated. Polysome analysis suggests that both mRNA variants contribute to GATA4 protein synthesis.
Taken together, our results indicate that the GATA4 gene closely resembles the other GATA family members in terms of gene structure where alternative first exon usage appears to be an important mechanism for regulating its tissue- and cell-specific expression.
Journal Article
Preliminary Findings of Structure and Expression of Opioid Receptor Genes in a Peregrine Falcon (Falco peregrinus), a Snowy Owl (Bubo scandiacus), and a Blue-fronted Amazon Parrot (Amazona aestiva)
by
Silversides, David W.
,
Fitzgerald, Guy
,
Duhamelle, Alexis
in
Amazon aestiva
,
Amazona
,
Amazona - genetics
2018
To further knowledge of the physiology of opioid receptors in birds, the structure and expression of the μ-, δ-, and κ-opioid receptor genes were studied in a peregrine falcon (Falco peregrinus), a snowy owl (Bubo scandiacus), and a blue-fronted Amazon parrot (Amazona aestiva). Tissue samples were obtained from birds that had been euthanatized for poor release prognosis or medical reasons. Samples were taken from the brain (telencephalon, thalamus, pituitary gland, cerebellum, pons, medulla oblongata, mesencephalon), the spinal cord and dorsal root ganglions, and plantar foot skin. Messenger RNA was recovered, and reverse transcription polymerase chain reaction (RT-PCR) was performed to generate complementary DNA (cDNA) sequences. Gene structures were documented by directly comparing cDNA sequences with recently published genomic sequences for the peregrine falcon and the blue-fronted Amazon parrot or by comparisons with genomic sequences of related species for the snowy owl. Structurally, the avian μ-opioid receptor messenger RNA (mRNA) species were complex, displaying differential splicing, alternative stop codons, and multiple polyadenylation signals. In comparison, the structure of the avian κ-receptor mRNA was relatively simple. In contrast to what is seen in humans, the avian δ-receptor mRNA structure was found to be complex, demonstrating novel 3-prime coding and noncoding exons not identified in mammals. The role of the δ-opioid receptor merits further investigation in avian species.
Journal Article
Differential regulation of Janus kinase 3 (JAK3) in bovine preovulatory follicles and identification of JAK3 interacting proteins in granulosa cells
by
Silversides, David W.
,
Ndiaye, Kalidou
,
Castonguay, Amélie
in
Analysis
,
Animals
,
Carrier Proteins - metabolism
2016
Background
Janus kinase 3 (JAK3) is a member of the membrane-associated non-receptor tyrosine kinase protein family and is considered predominantly expressed in hematopoietic cells. We previously identified
JAK3
as a differentially expressed gene in granulosa cells (GC) of bovine preovulatory follicles. The present study aimed to further investigate JAK3 regulation, to identify protein binding partners and better understand its mode of action in bovine reproductive cells.
Results
GC were obtained from small follicles (SF), dominant follicles at day 5 of the estrous cycle (DF), and ovulatory follicles, 24 h following hCG injection (OF). RT-PCR analyses showed greatest expression of
JAK3
in GC of DF, while
JAK3
expression was downregulated in OF (
P
< 0.0001). In addition, there was a 5- and 20-fold reduction of
JAK3
steady-state mRNA levels in follicular walls, respectively at 12 and 24 hours post-hCG as compared to 0 h (
P
< 0.05). Similarly,
JAK3
expression was downregulated by the endogenous LH surge. These results were confirmed in western blot analysis showing weakest JAK3 protein amounts in OF as compared to DF. Yeast two-hybrid screening of a DF-cDNA library resulted in the identification of JAK3 partners in GC that were confirmed by co-immunoprecipitation and included leptin receptor overlapping transcript-like 1 (LEPROTL1), inhibin beta A (INHBA) and cyclin-dependent kinase inhibitor 1B (CDKN1B). In functional studies using bovine endometrial cells, JAK3 increased phosphorylation of STAT3 and cell viability, while the addition of JANEX-1 inhibited JAK3 actions.
Conclusion
These results support a physiologically relevant role of JAK3 in follicular development and provide insights into the mode of action and function of JAK3 in reproductive tissues.
Journal Article
Differential expression of lysosome-associated protein transmembrane-4 beta (LAPTM4B) in granulosa cells of ovarian follicles and in other bovine tissues
by
Sirois, Jean
,
Ndiaye, Kalidou
,
Carrière, Paul D
in
Analysis
,
Animals
,
Biological products industry
2015
Background
LAPTM4B is a member of the lysosome-associated transmembrane protein superfamily that is differentially expressed in normal human tissues and upregulated in various types of carcinomas. These proteins are thought to be involved in the regulation of cell proliferation and survival. The objective of this study was to investigate the expression of bovine LAPTM4B during ovarian follicular development and in various bovine tissues.
Methods and results
Northern blot analysis revealed a 1.8 kb transcript, with highly variable steady state levels among tissues. RT-PCR analysis showed that LAPTM4B mRNA transcripts were low in granulosa cells of small antral follicles, increased in large dominant follicles, and decreased in ovulatory follicles following injection of human chorionic gonadotropin (hCG; P < 0.003). Ovulatory follicles collected at various times after hCG injection revealed a significant reduction of LAPTM4B mRNA starting at 18 h post-hCG (P < 0.029). Immunobloting analysis using antibodies generated against bovine LAPTM4B recognized proteins of 26.3 and 31.5 kDa in granulosa cells of developing follicles and corpus luteum. Further analyses of affinity-purified His-tag LAPTM4B overexpressed in HEK cells showed that the 31.5 kDa protein represented the ubiquinated isoform of the 26.3 kDa native protein. The 26.3 kDa protein was differentially expressed showing highest amounts in dominant follicles and lowest amounts in ovulatory follicles 24 h post-hCG. Immunohistochemical analyses of LAPTM4B showed marked heterogeneity of labeling signal among tissues, with LAPTM4B mainly localized to perinuclear vesicles, in keeping with its putative lysosomal membrane localization.
Conclusion
This study reports for the first time that bovine LAPTM4B in granulosa cells is present in both unubiquinated and ubiquinated forms, and is differentially expressed in developing ovarian follicles, suggesting a possible role in terminal follicular growth.
Journal Article
Tissue activity of circulating prorenin
by
Silversides, David W.
,
Prescott, Gary
,
Reudelhuber, Timothy L.
in
Animals
,
Biological and medical sciences
,
Endocrine kidney. Renin-angiotensin-aldosterone system
2002
Both renin and its biosynthetic precursor, prorenin, are secreted into the circulation of mammals. Although the circulating levels of prorenin can exceed those of renin by as much as 100-fold in certain conditions, there is no evidence that prorenin contributes to the synthesis of circulating angiotensin peptide synthesis or increased blood pressure (BP). In the current study, we have generated a transgenic mouse line that overexpresses human prorenin in the liver and have mated these mice to a second mouse line expressing human angiotensinogen in the heart. Double-transgenic progeny display a selective increase in angiotensin I content in the heart (but not the plasma) as compared to the single-transgenic mice. These results are consistent with a model in which circulating prorenin is taken up by tissues where it can contribute to the local synthesis of angiotensin peptides. This finding may explain some of the pathologies associated with high circulating prorenin levels.
Journal Article