Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7 result(s) for "Simmons, Christine Q."
Sort by:
RNA-based translation activators for targeted gene upregulation
Technologies capable of programmable translation activation offer strategies to develop therapeutics for diseases caused by insufficient gene expression. Here, we present “translation-activating RNAs” (taRNAs), a bifunctional RNA-based molecular technology that binds to a specific mRNA of interest and directly upregulates its translation. taRNAs are constructed from a variety of viral or mammalian RNA internal ribosome entry sites (IRESs) and upregulate translation for a suite of target mRNAs. We minimize the taRNA scaffold to 94 nucleotides, identify two translation initiation factor proteins responsible for taRNA activity, and validate the technology by amplifying SYNGAP1 expression, a haploinsufficiency disease target, in patient-derived cells. Finally, taRNAs are suitable for delivery as RNA molecules by lipid nanoparticles (LNPs) to cell lines, primary neurons, and mouse liver in vivo. taRNAs provide a general and compact nucleic acid-based technology to upregulate protein production from endogenous mRNAs, and may open up possibilities for therapeutic RNA research. Many diseases are driven by the insufficient expression of critical genes, but few technologies are capable of rescuing these endogenous protein levels. Here, Cao et al. present an RNA-based technology that boosts protein production from endogenous mRNAs by upregulating their translation.
Genome-Wide Identification of Expression Quantitative Trait Loci (eQTLs) in Human Heart
In recent years genome-wide association studies (GWAS) have uncovered numerous chromosomal loci associated with various electrocardiographic traits and cardiac arrhythmia predisposition. A considerable fraction of these loci lie within inter-genic regions. The underlying trait-associated variants likely reside in regulatory regions and exert their effect by modulating gene expression. Hence, the key to unraveling the molecular mechanisms underlying these cardiac traits is to interrogate variants for association with differential transcript abundance by expression quantitative trait locus (eQTL) analysis. In this study we conducted an eQTL analysis of human heart. For a total of 129 left ventricular samples that were collected from non-diseased human donor hearts, genome-wide transcript abundance and genotyping was determined using microarrays. Each of the 18,402 transcripts and 897,683 SNP genotypes that remained after pre-processing and stringent quality control were tested for eQTL effects. We identified 771 eQTLs, regulating 429 unique transcripts. Overlaying these eQTLs with cardiac GWAS loci identified novel candidates for studies aimed at elucidating the functional and transcriptional impact of these loci. Thus, this work provides for the first time a comprehensive eQTL map of human heart: a powerful and unique resource that enables systems genetics approaches for the study of cardiac traits.
SPARCL1 suppresses metastasis in prostate cancer
Metastasis, the main cause of death from cancer, remains poorly understood at the molecular level. Based on a pattern of reduced expression in human prostate cancer tissues and tumor cell lines, a candidate suppressor gene (SPARCL1) was identified. We used in vitro approaches to determine whether overexpression of SPARCL1 affects cell growth, migration, and invasiveness. We then employed xenograft mouse models to analyze the impact of SPARCL1 on prostate cancer cell growth and metastasis in vivo. SPARCL1 expression did not inhibit tumor cell proliferation in vitro. By contrast, SPARCL1 did suppress tumor cell migration and invasiveness in vitro and tumor metastatic growth in vivo, conferring improved survival in xenograft mouse models. We present the first in vivo data suggesting that SPARCL1 suppresses metastasis of prostate cancer. •We identify a candidate suppressor gene (SPARCL1) from a cancer prognostic signature.•We examine expression patterns of SPARCL1 in human prostate tissues and cell lines.•Overexpression of SPARCL1 does not affect tumor cell growth in vitro.•SPARCL1 suppresses tumor cell migration, invasiveness, and metastasis.
Protein expression analysis ofChlamydia pneumoniae persistence by combined surface-enhanced laser desorption ionization time-of-flight mass spectrometry and two-dimensional polyacrylamide gel electrophoresis
The aim of this study was to examine the protein expression profiles of persistent Chlamydia pneumoniae by two-dimensional polyacrylamide gel electrophoresis (2D PAGE) and surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS). Although 2D PAGE is still the method of choice for separating and detecting components of complex protein mixtures, it has several distinct disadvantages; i.e., being labor-intensive and having a bias toward proteins within the dynamic range of the gel condition. Hence, SELDI-TOF-MS technology was used to complement 2D PAGE. C. pneumoniae -infected HEp2 cells were treated with or without IFN-γ, and protein expression profiles were determined at 48 h postinfection (hpi). Unfractionated monolayers were also used for protein profiling by SELDI-TOF, using two different chip surface types: weak cation exchanger and hydrophobic surface. Under IFN-γ-induced persistence, C. pneumoniae expresses an altered protein expression profile. Twenty chlamydial proteins showed differential regulatory patterns by SELDI-TOF-MS, two of which, HSP-70 cofactor, and a hypothetical protein, were identified by 2D PAGE and mass spectrometry. Two additional proteins, phosphatidylserine decarboxylase and 30S ribosomal protein S17, were exclusively identified by SELDI TOF-MS analysis, as these were not present in sufficient quantity for detection by 2D PAGE. We propose that a combination of 2D-PAGE and SELDI-TOF-MS may complement the disadvantages of each technique alone and may provide a rapid and precise screening technique.
Genome-Wide Identification of Expression Quantitative Trait Loci (eQTLs) in Human Heart: e97380
In recent years genome-wide association studies (GWAS) have uncovered numerous chromosomal loci associated with various electrocardiographic traits and cardiac arrhythmia predisposition. A considerable fraction of these loci lie within inter-genic regions. The underlying trait-associated variants likely reside in regulatory regions and exert their effect by modulating gene expression. Hence, the key to unraveling the molecular mechanisms underlying these cardiac traits is to interrogate variants for association with differential transcript abundance by expression quantitative trait locus (eQTL) analysis. In this study we conducted an eQTL analysis of human heart. For a total of 129 left ventricular samples that were collected from non-diseased human donor hearts, genome-wide transcript abundance and genotyping was determined using microarrays. Each of the 18,402 transcripts and 897,683 SNP genotypes that remained after pre-processing and stringent quality control were tested for eQTL effects. We identified 771 eQTLs, regulating 429 unique transcripts. Overlaying these eQTLs with cardiac GWAS loci identified novel candidates for studies aimed at elucidating the functional and transcriptional impact of these loci. Thus, this work provides for the first time a comprehensive eQTL map of human heart: a powerful and unique resource that enables systems genetics approaches for the study of cardiac traits.
The Genome of the Ctenophore Mnemiopsis leidyi and Its Implications for Cell Type Evolution
The identity of the most basal lineages of the animal kingdom evolutionary tree has long been contested. Ryan et al. (p. 10.1126/science.1242592 ; see the Perspective by Rokas ) sequenced the genome of the ctenophore the warty comb jelly or sea walnut, Mnemiopsis leidyi , and conclude that ctenophores alone, not sponges or the clade consisting of both ctenophores and cnidarians, are the most basal extant animals. The results suggest a specific evolutionary process that likely occurred—including repeated gains and loss of mesoderm, expansion of genes associated with the cell cycle, growth signaling, apoptosis, and epithelial and neural cell types. Furthermore, previous hypotheses regarding the evolution of animals may require re-evaluation. Analysis of the genome of the sea walnut reveals insights into the early evolution of the animal kingdom. [Also see Perspective by Rokas ] An understanding of ctenophore biology is critical for reconstructing events that occurred early in animal evolution. Toward this goal, we have sequenced, assembled, and annotated the genome of the ctenophore Mnemiopsis leidyi . Our phylogenomic analyses of both amino acid positions and gene content suggest that ctenophores rather than sponges are the sister lineage to all other animals. Mnemiopsis lacks many of the genes found in bilaterian mesodermal cell types, suggesting that these cell types evolved independently. The set of neural genes in Mnemiopsis is similar to that of sponges, indicating that sponges may have lost a nervous system. These results present a newly supported view of early animal evolution that accounts for major losses and/or gains of sophisticated cell types, including nerve and muscle cells.
Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes
Background Calcium-activated photoproteins are luciferase variants found in photocyte cells of bioluminescent jellyfish (Phylum Cnidaria) and comb jellies (Phylum Ctenophora). The complete genomic sequence from the ctenophore Mnemiopsis leidyi , a representative of the earliest branch of animals that emit light, provided an opportunity to examine the genome of an organism that uses this class of luciferase for bioluminescence and to look for genes involved in light reception. To determine when photoprotein genes first arose, we examined the genomic sequence from other early-branching taxa. We combined our genomic survey with gene trees, developmental expression patterns, and functional protein assays of photoproteins and opsins to provide a comprehensive view of light production and light reception in Mnemiopsis . Results The Mnemiopsis genome has 10 full-length photoprotein genes situated within two genomic clusters with high sequence conservation that are maintained due to strong purifying selection and concerted evolution. Photoprotein-like genes were also identified in the genomes of the non-luminescent sponge Amphimedon queenslandica and the non-luminescent cnidarian Nematostella vectensis , and phylogenomic analysis demonstrated that photoprotein genes arose at the base of all animals. Photoprotein gene expression in Mnemiopsis embryos begins during gastrulation in migrating precursors to photocytes and persists throughout development in the canals where photocytes reside. We identified three putative opsin genes in the Mnemiopsis genome and show that they do not group with well-known bilaterian opsin subfamilies. Interestingly, photoprotein transcripts are co-expressed with two of the putative opsins in developing photocytes. Opsin expression is also seen in the apical sensory organ. We present evidence that one opsin functions as a photopigment in vitro , absorbing light at wavelengths that overlap with peak photoprotein light emission, raising the hypothesis that light production and light reception may be functionally connected in ctenophore photocytes. We also present genomic evidence of a complete ciliary phototransduction cascade in Mnemiopsis . Conclusions This study elucidates the genomic organization, evolutionary history, and developmental expression of photoprotein and opsin genes in the ctenophore Mnemiopsis leidyi , introduces a novel dual role for ctenophore photocytes in both bioluminescence and phototransduction, and raises the possibility that light production and light reception are linked in this early-branching non-bilaterian animal.