Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
1,760 result(s) for "Simon, Stuart"
Sort by:
The rough guide to China
This guide to China enables you to explore the sights and attractions of the country, offers advice on where to stay and eat, and comments on China's history, politics, environment, and people.
Identifying the World's Most Climate Change Vulnerable Species: A Systematic Trait-Based Assessment of all Birds, Amphibians and Corals
Climate change will have far-reaching impacts on biodiversity, including increasing extinction rates. Current approaches to quantifying such impacts focus on measuring exposure to climatic change and largely ignore the biological differences between species that may significantly increase or reduce their vulnerability. To address this, we present a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity; this draws on species' biological traits and their modeled exposure to projected climatic changes. In the largest such assessment to date, we applied this approach to each of the world's birds, amphibians and corals (16,857 species). The resulting assessments identify the species with greatest relative vulnerability to climate change and the geographic areas in which they are concentrated, including the Amazon basin for amphibians and birds, and the central Indo-west Pacific (Coral Triangle) for corals. We found that high concentration areas for species with traits conferring highest sensitivity and lowest adaptive capacity differ from those of highly exposed species, and we identify areas where exposure-based assessments alone may over or under-estimate climate change impacts. We found that 608-851 bird (6-9%), 670-933 amphibian (11-15%), and 47-73 coral species (6-9%) are both highly climate change vulnerable and already threatened with extinction on the IUCN Red List. The remaining highly climate change vulnerable species represent new priorities for conservation. Fewer species are highly climate change vulnerable under lower IPCC SRES emissions scenarios, indicating that reducing greenhouse emissions will reduce climate change driven extinctions. Our study answers the growing call for a more biologically and ecologically inclusive approach to assessing climate change vulnerability. By facilitating independent assessment of the three dimensions of climate change vulnerability, our approach can be used to devise species and area-specific conservation interventions and indices. The priorities we identify will strengthen global strategies to mitigate climate change impacts.
Protected Areas and Effective Biodiversity Conservation
Increasing the collective contribution of protected areas toward preventing species extinctions requires the strategic allocation of management efforts. Although protected areas (PAs) cover 13% of Earth's land ( 1 ), substantial gaps remain in their coverage of global biodiversity ( 2 ). Thus, there has been emphasis on strategic expansion of the global PA network ( 3 – 5 ). However, because PAs are often understaffed, underfunded, and beleaguered in the face of external threats ( 6 , 7 ), efforts to expand PA coverage should be complemented by appropriate management of existing PAs. Previous calls for enhancing PA management have focused on improving operational effectiveness of each PA [e.g., staffing and budgets ( 6 )]. Little guidance has been offered on how to improve collective effectiveness for meeting global biodiversity conservation goals ( 3 ). We provide guidance for strategically allocating management efforts among and within existing PAs to strengthen their collective contribution toward preventing global species extinctions.
Afrotropical montane birds experience upslope shifts and range contractions along a fragmented elevational gradient in response to global warming
Global warming is predicted to result in upslope shifts in the elevational ranges of bird species in montane habitats. Yet few studies have examined changes over time in the elevational distribution of species along fragmented gradients in response to global warming. Here, we report on a resurvey of an understory bird community in the Usambara Mountains in Tanzania, along a forested elevational gradient that has been fragmented over the last 200 years. In 2019, we resurveyed seven sites, ranging in elevation from 360 m to 2110 m, that were originally surveyed between 1979 and 1981. We calculated differences in mean elevation and lower and upper range limits for 29 species between the two time periods and corrected for possible differences in elevation due to chance. Over four decades, we documented a significant mean upslope shift across species of 93 m. This shift was smaller than the 125 m expected shift due to local climate warming. Of the 29 focal species, 19 shifted upslope, eight downslope, and two remained unchanged. Mean upslope shifts in species were driven largely by contracting lower range limits which moved significantly upslope on average across species by 183 m, while upper range limits shifted non-significantly upslope by 72 m, leading to a mean range contraction of 114 m across species. Community composition of understory bird species also shifted over time, with current communities resembling communities found historically at lower elevations. Past forest fragmentation in combination with the limited gap-crossing ability of many tropical understory bird species are very likely important contributory factors to the observed asymmetrical shifts in lower and upper elevational range limits. Re-establishing forested linkages among the largest and closest forest fragments in the Eastern Arc Mountains are critical to permitting species to shift upslope and to reduce further elevational range contractions over time.
Improvements to the Red List Index
The Red List Index uses information from the IUCN Red List to track trends in the projected overall extinction risk of sets of species. It has been widely recognised as an important component of the suite of indicators needed to measure progress towards the international target of significantly reducing the rate of biodiversity loss by 2010. However, further application of the RLI (to non-avian taxa in particular) has revealed some shortcomings in the original formula and approach: It performs inappropriately when a value of zero is reached; RLI values are affected by the frequency of assessments; and newly evaluated species may introduce bias. Here we propose a revision to the formula, and recommend how it should be applied in order to overcome these shortcomings. Two additional advantages of the revisions are that assessment errors are not propagated through time, and the overall level extinction risk can be determined as well as trends in this over time.
Quantification of Extinction Risk: IUCN's System for Classifying Threatened Species
The International Union for Conservation of Nature (IUCN) Red List of Threatened Species was increasingly used during the 1980s to assess the conservation status of species for policy and planning purposes. This use stimulated the development of a new set of quantitative criteria for listing species in the categories of threat: critically endangered, endangered, and vulnerable. These criteria, which were intended to be applicable to all species except microorganisms, were part of a broader system for classifying threatened species and were fully implemented by IUCN in 2000. The system and the criteria have been widely used by conservation practitioners and scientists and now underpin one indicator being used to assess the Convention on Biological Diversity 2010 biodiversity target. We describe the process and the technical background to the IUCN Red List system. The criteria refer to fundamental biological processes underlying population decline and extinction. But given major differences between species, the threatening processes affecting them, and the paucity of knowledge relating to most species, the IUCN system had to be both broad and flexible to be applicable to the majority of described species. The system was designed to measure the symptoms of extinction risk, and uses 5 independent criteria relating to aspects of population loss and decline of range size. A species is assigned to a threat category if it meets the quantitative threshold for at least one criterion. The criteria and the accompanying rules and guidelines used by IUCN are intended to increase the consistency, transparency, and validity of its categorization system, but it necessitates some compromises that affect the applicability of the system and the species lists that result. In particular, choices were made over the assessment of uncertainty, poorly known species, depleted species, population decline, restricted ranges, and rarity; all of these affect the way red lists should be viewed and used. Processes related to priority setting and the development of national red lists need to take account of some assumptions in the formulation of the criteria. /// La Lista Roja de Especies Amenazadas de la UICN (Unión Internacional para la Conservación de la Naturaleza) fue muy utilizada durante la década de 1980 para evaluar el estatus de conservación de especies para fines políticos y de planificación. Este uso estimuló el desarrollo de un conjunto nuevo de criterios cuantitativos para enlistar especies en las categorías de amenaza: en peligro crítico, en peligro y vulnerable. Estos criterios, que se pretendía fueran aplicables a todas las especies excepto microorganismos, eran parte de un sistema general para clasificar especies amenazadas y fueron implementadas completamente por la UICN en 2000. El sistema y los criterios han sido ampliamente utilizados por practicantes y científicos de la conservación y actualmente apuntalan un indicador utilizado para evaluar el objetivo al 2010 de la Convención de Diversidad Biológica. Describimos el proceso y el respaldo técnico del sistema de la Lista Roja de la IUCN. Los criterios se refieren a los procesos biológicos fundamentales que subyacen en la declinación y extinción de una población. Pero, debido a diferencias mayores entre especies, los procesos de amenaza que los afectan y la escasez de conocimiento sobre la mayoría de las especies, el sistema de la UICN tenía que ser amplio y flexible para ser aplicable a la mayoría de las especies descritas. El sistema fue diseñado para medir los síntomas del riesgo de extinción, y utiliza cinco criterios independientes que relacionan aspectos de la pérdida poblacional y la declinación del rango de distribución. Una especie es asignada a una categoría de amenaza si cumple el umbral cuantitativo por lo menos para un criterio. Los criterios, las reglas acompañantes y las directrices utilizadas por la UICN tienen la intención de incrementar la consistencia, transparencia y validez de su sistema de clasificación, pero requiere algunos compromisos que afectan la aplicabilidad del sistema y las listas de especies que resultan. En particular, se hicieron selecciones por encima de la evaluación de incertidumbre, especies poco conocidas, especies disminuidas, declinación poblacional, rangos restringidos y rareza; todas estas afectan la forma en que las listas rojas deberían ser vistas y usadas. Los procesos relacionados con la definición de prioridades y el desarrollo de las listas rojas nacionales necesitan considerar algunos de los supuestos en la formulación de los criterios.
Shortfalls and Solutions for Meeting National and Global Conservation Area Targets
We are grateful to the many individuals and organizations who contribute to the IUCN Red List of Threatened Species,WDPA, or to identification of IBAs or AZEs. We thank A. Bennett for help with data collation and N. Dulvy, W. Laurance, and D. Faith for helpful comments on an earlier draft. This work was supported by the Cambridge Conservation Initiative Collaborative Fund and Arcadia.
Measuring Global Trends in the Status of Biodiversity: Red List Indices for Birds
The rapid destruction of the planet's biodiversity has prompted the nations of the world to set a target of achieving a significant reduction in the rate of loss of biodiversity by 2010. However, we do not yet have an adequate way of monitoring progress towards achieving this target. Here we present a method for producing indices based on the IUCN Red List to chart the overall threat status (projected relative extinction risk) of all the world's bird species from 1988 to 2004. Red List Indices (RLIs) are based on the number of species in each Red List category, and on the number changing categories between assessments as a result of genuine improvement or deterioration in status. The RLI for all bird species shows that their overall threat status has continued to deteriorate since 1988. Disaggregated indices show that deteriorations have occurred worldwide and in all major ecosystems, but with particularly steep declines in the indices for Indo-Malayan birds (driven by intensifying deforestation of the Sundaic lowlands) and for albatrosses and petrels (driven by incidental mortality in commercial longline fisheries). RLIs complement indicators based on species population trends and habitat extent for quantifying global trends in the status of biodiversity. Their main weaknesses are that the resolution of status changes is fairly coarse and that delays may occur before some status changes are detected. Their greatest strength is that they are based on information from nearly all species in a taxonomic group worldwide, rather than a potentially biased subset. At present, suitable data are only available for birds, but indices for other taxonomic groups are in development, as is a sampled index based on a stratified sample from all major taxonomic groups.