Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
57 result(s) for "Simonetti, Elena"
Sort by:
Guadecitabine plus ipilimumab in unresectable melanoma: five-year follow-up and integrated multi-omic analysis in the phase 1b NIBIT-M4 trial
Association with hypomethylating agents is a promising strategy to improve the efficacy of immune checkpoint inhibitors-based therapy. The NIBIT-M4 was a phase Ib, dose-escalation trial in patients with advanced melanoma of the hypomethylating agent guadecitabine combined with the anti-CTLA-4 antibody ipilimumab that followed a traditional 3 + 3 design (NCT02608437). Patients received guadecitabine 30, 45 or 60 mg/m 2 /day subcutaneously on days 1 to 5 every 3 weeks starting on week 0 for a total of four cycles, and ipilimumab 3 mg/kg intravenously starting on day 1 of week 1 every 3 weeks for a total of four cycles. Primary outcomes of safety, tolerability, and maximum tolerated dose of treatment were previously reported. Here we report the 5-year clinical outcome for the secondary endpoints of overall survival, progression free survival, and duration of response, and an exploratory integrated multi-omics analysis on pre- and on-treatment tumor biopsies. With a minimum follow-up of 45 months, the 5-year overall survival rate was 28.9% and the median duration of response was 20.6 months. Re-expression of immuno-modulatory endogenous retroviruses and of other repetitive elements, and a mechanistic signature of guadecitabine are associated with response. Integration of a genetic immunoediting index with an adaptive immunity signature stratifies patients/lesions into four distinct subsets and discriminates 5-year overall survival and progression free survival. These results suggest that coupling genetic immunoediting with activation of adaptive immunity is a relevant requisite for achieving long term clinical benefit by epigenetic immunomodulation in advanced melanoma patients. The NIBIT-M4 trial was designed to assess the safety, biological and clinical activity of anti-CTLA4 ipilimumab with the DNA hypomethylating agent guadecitabine in advanced melanoma patients. Here the authors report the five-year follow-up results of the trial and an integrated multi-omics analysis of pre- and on-treatment tumor biopsies.
Integrated multi-omics profiling reveals the role of the DNA methylation landscape in shaping biological heterogeneity and clinical behaviour of metastatic melanoma
Background We developed an integrated multi-omics analysis in metastatic melanoma (MM) cohorts to associate DNA methylation profiles with tumor progression, survival, response to adjuvant immunotherapy, structure of the tumor immune microenvironment and transcriptional programs of immunity and melanoma differentiation. Methods Lesions ( n  = 191) from a fully annotated, retrospective cohort of 165 AJCC 8th Stage III and IV melanoma patients (EPICA cohort) were characterized by reduced representation bisulfite sequencing, RNA sequencing, whole exome sequencing, quantitative immunohistochemistry and multiplex immunofluorescence analysis. The TCGA melanoma datasets were used for validation. Pre-therapy lesions ( n  = 28) from a cohort of MM patients treated with adjuvant immune checkpoint blockade were characterized for the DNA methylation profile. Impact of a DNMT inhibitor on DNA methylation and transcriptomic profiles of melanoma cell lines was investigated by EPIC arrays and Clariom S arrays. Results Four tumor subsets (i.e. DEMethylated, LOW, INTermediate and CIMP) with progressively increasing levels of DNA methylation were identified in EPICA, TCGA MM and TCGA primary melanoma cohorts. EPICA patients with LOW methylation tumors exhibited a significantly longer survival and a lower progression rate to more advanced AJCC stages, compared to patients with CIMP tumors. In an adjuvant immune checkpoint blockade cohort, patients with DEM/LOW pre-therapy lesions showed significantly longer relapse-free survival compared to those with INT/CIMP lesions. RNA-seq data analysis revealed that LOW and CIMP EPICA tumors showed opposite activation of master molecules influencing prognostic target genes, and differential expression of immunotherapy response and melanoma differentiation signatures. Compared to CIMP tumors, LOW lesions showed enrichment for CD8 + TCF-1 + PD-1 + TIM-3 − pre-exhausted and CD8 + TCF-1 − PD-1 + TIM-3 + exhausted T cells, more frequent retention of HLA Class I antigens and a de-differentiated melanoma phenotype. The differentiation and immune-related transcriptional features associated with LOW vs CIMP lesions were tumor-intrinsic programs retained in-vitro by melanoma cell lines. Consistently, treatment of differentiated melanoma cell lines with a DNMT inhibitor induced global DNA de-methylation, promoted de-differentiation and upregulated viral mimicry and IFNG predictive signatures of immunotherapy response. Conclusions These results reveal the biological, prognostic and therapeutic relevance of DNA methylation classes in MM and support methylome targeting strategies for precision immunotherapy.
A Multidisciplinary Approach to Improve the Management of Immune-Checkpoint Inhibitor-Related Pneumonitis
Treatment with immune-checkpoint inhibitors (ICIs) can be associated with a wide spectrum of immune-related adverse events (irAEs). Among irAEs, immune-mediated pneumonitis (im-PN) is a rare but potentially life-threatening side effect. TPrompt multidisciplinary diagnosis and effective management of im-PN may be essential to avoid severe complications and allowing resumation of therapy. We collected a case series of skin (melanoma, cutaneous squamous cell carcinoma-CSCC), lung, and mesothelioma cancer patients (pts), treated with ICI at the Center for Immuno-Oncology University Hospital of Siena, Italy, and diagnosed with im-PN. Clinical and radiologic data were thoroughly collected, as well as bronchoalveolar lavage (BAL) samples; im-PN was graded using CTCAE v. 5.0. Radiological patterns were reported according to the leischner Society classification. From January 2014 to February 2023, 1004 patients with melanoma (522), CSCC (42), lung (342) or mesothelioma (98) were treated with ICI (619 monotherapy; 385 combination). Among treated patients, 24 (2%) developed an im-PN and 58% were symptomatic. Im-PN were classified as grades G1 (10) and G2 (14). Prompt steroid treatment led to complete resolution of im-PN in 21 patients, with a median time to resolution of 14 weeks (range: 0.4-51). Twelve patients resumed ICI therapy once fully-recovered and 2 experienced a recurrence that completely resolved with steroids after resumption of treatment. Three radiologic patterns were identified: organizational pneumonia-like (67%), pulmonary eosinophilia (29%), and hypersensitivity pneumonitis (4%). Furthermore, BAL analysis performed in 8 (33%) patients showed an inflammatory lymphocytic infiltrate, predominantly consisting of foam cell-like macrophage infiltrates in 6 cases. Notably, transmission electron microscopy evaluation performed in 2 patients revealed a scenario suggestive of a drug-mediated toxicity. Im-PN is a rare but challenging side effect of ICI therapy, with variable time of onset and with heterogeneous clinical and radiological presentations. A multidisciplinary assessment is mandatory to optimize the clinical management of im-PN.
From Co-Stimulation to Co-Inhibition: A Continuum of Immunotherapy Care Toward Long-Term Survival in Melanoma
Harnessing the immune system with immune-checkpoint(s) blockade (ICB) has dramatically changed the treatment landscape of advanced melanoma patients in the last decade. Indeed, durable clinical responses and long-term survival can be achieved with anti-Cytotoxic T-Lymphocyte Antigen-4 (CTLA-4) and anti-Programmed cell Death-1 (PD-1) monoclonal antibodies (mAb) either alone or in combination. Despite these unprecedented results, due to intrinsic or acquired resistance to ICB-based immunotherapy, about half of metastatic melanoma (MM) patients neither respond to therapy nor experience durable clinical benefit or long-term survival. To improve the efficacy of ICB therapy among a larger proportion of MM patients, in addition to the targeting of immune-checkpoint(s) inhibitors (ICI) such as CTLA-4 or PD-1, several co-stimulatory molecules, such as Inducible T-cell COStimulator (ICOS), CD137 and OX40, have been investigated in MM, with initial signs of activity. Thus, a number of MM patients have been exposed to co-inhibitory and co-stimulatory mAb in the course of their disease. Being aware of the clinical outcome of such patients may pave the way to novel and more effective clinical approaches and therapeutic sequences for MM patients. Here we report a paradigmatic clinical case of a cutaneous MM patient who achieved multiple and durable complete responses, leading to an extraordinary long-term survival with sequential ICB therapies, suggesting the possibility to build a highly effective continuum of care with co-inhibitory and co-stimulatory therapeutic mAb.
Integrated multi-omics profiling reveals the role of the DNA methylation landscape in shaping biological heterogeneity and clinical behaviour of metastatic melanoma
The biological and clinical relevance of the DNA methylation landscape in metastatic melanoma (MM) remains underexplored. In a retrospective cohort of 191 MM lesions from 165 AJCC Stage III and IV patients (EPICA cohort) we identified four tumor subsets (i.e. DEMethylated, LOW, INTermediate and CIMP) with progressively increasing levels of DNA methylation. These findings were validated in the TCGA MM. In EPICA, patients with LOW methylation tumors exhibited a significantly longer survival and a lower progression rate to more advanced AJCC stages, compared to patients with CIMP tumors. Furthermore, in an independent adjuvant immune checkpoint blockade MM cohort, patients with DEM/LOW pre-therapy lesions showed significantly longer relapse-free survival compared to those with INT/CIMP lesions. RNA-seq data analysis revealed that LOW and CIMP EPICA tumors showed opposite activation of master molecules influencing prognostic target genes, and differential expression of immunotherapy response and melanoma differentiation signatures. Compared to CIMP tumors, LOW lesions showed enrichment for pre-exhausted and exhausted T cells and more frequent retention of HLA Class I antigens. The differentiation and immune-related transcriptional features associated with LOW vs CIMP lesions were tumor-intrinsic programs retained in-vitro by melanoma cell lines. Consistently, treatment of differentiated melanoma cell lines with a DNMT inhibitor induced global DNA de-methylation, promoted de-differentiation and upregulated viral mimicry and IFNG predictive signatures of immunotherapy response. These findings underscore the role of DNA methylation in driving MM biological and clinical heterogeneity and support exploration of methylome targeting strategies for precision immunotherapy in melanoma.Competing Interest StatementA.M.D.G. Advisor/board member for Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA; Bristol Myers Squibb; IncytePierre Fabre; Sanofi; GlaxoSmithKline; Novartis; SunPharma; Immunocore. Honoraria for Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA; Roche; Bristol Myers Squibb; Sanofi; Pierre Fabre; GlaxoSmithKline; Vyvamed. M.M. Advisor/board member for Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA; Roche; Bristol Myers Squibb; Incyte; AstraZeneca; Amgen; Pierre Fabre; Eli Lilly; Sanofi; GlaxoSmithKline; Alfasigma; Merck Serono; and owns shares in Epigen Therapeutics srl; honoraria for Merck. M.C. Fundings: Moderna Therapeutics. A.C. and S.C. own shares in Epigen Therapeutics srl. Other authors have nothing to declare.
Estimation of 3D Body Center of Mass Acceleration and Instantaneous Velocity from a Wearable Inertial Sensor Network in Transfemoral Amputee Gait: A Case Study
The analysis of the body center of mass (BCoM) 3D kinematics provides insights on crucial aspects of locomotion, especially in populations with gait impairment such as people with amputation. In this paper, a wearable framework based on the use of different magneto-inertial measurement unit (MIMU) networks is proposed to obtain both BCoM acceleration and velocity. The proposed framework was validated as a proof of concept in one transfemoral amputee against data from force plates (acceleration) and an optoelectronic system (acceleration and velocity). The impact in terms of estimation accuracy when using a sensor network rather than a single MIMU at trunk level was also investigated. The estimated velocity and acceleration reached a strong agreement (ρ > 0.89) and good accuracy compared to reference data (normalized root mean square error (NRMSE) < 13.7%) in the anteroposterior and vertical directions when using three MIMUs on the trunk and both shanks and in all three directions when adding MIMUs on both thighs (ρ > 0.89, NRMSE ≤ 14.0% in the mediolateral direction). Conversely, only the vertical component of the BCoM kinematics was accurately captured when considering a single MIMU. These results suggest that inertial sensor networks may represent a valid alternative to laboratory-based instruments for 3D BCoM kinematics quantification in lower-limb amputees.
Network approach in liquidomics landscape
Tissue-based biopsy is the present main tool to explore the molecular landscape of cancer, but it also has many limits to be frequently executed, being too invasive with the risk of side effects. These limits and the ability of cancer to constantly evolve its genomic profile, have recently led to the need of a less invasive and more accurate alternative, such as liquid biopsy. By searching Circulating Tumor Cells and residues of their nucleic acids or other tumor products in body fluids, especially in blood, but also in urine, stools and saliva, liquid biopsy is becoming the future of clinical oncology. Despite the current lack of a standardization for its workflows, that makes it hard to be reproduced, liquid biopsy has already obtained promising results for cancer screening, diagnosis, prognosis, and risk of recurrence. Through a more accessible molecular profiling of tumors, it could become easier to identify biomarkers predictive of response to treatment, such as EGFR mutations in non-small cell lung cancer and KRAS mutations in colorectal cancer, or Microsatellite Instability and Mismatch Repair as predictive markers of pembrolizumab response. By monitoring circulating tumor DNA in longitudinal repeated sampling of blood we could also predict Minimal Residual Disease and the risk of recurrence in already radically resected patients. In this review we will discuss about the current knowledge of limitations and strengths of the different forms of liquid biopsies for its inclusion in normal cancer management, with a brief nod to their newest biomarkers and its future implications.
Modelling antimicrobial resistance transmission to guide personalized antimicrobial stewardship interventions and infection control policies in healthcare setting: a pilot study
Infection control programs and antimicrobial stewardship have been proven effective in reducing the burden of diseases due to multidrug-resistant organisms, but quantifying the effect of each intervention is an open issue. For this aim, we propose a model to characterize the effect of interventions at single ward level. We adapted the Ross-Macdonald model to describe hospital cross-transmission dynamics of carbapenem resistant Klebsiella pneumoniae (CRKP), considering healthcare workers as the vectors transmitting susceptible and resistant pathogens among admitted patients. The model parameters were estimated from a literature review, further adjusted to reproduce observed clinical outcomes, and validated using real life data from a 2-year study in a university hospital. The model has been further explored through extensive sensitivity analysis, in order to assess the relevance of single interventions as well as their synergistic effects. Our model has been shown to be an effective tool to describe and predict the impact of interventions in reducing the prevalence of CRKP colonisation and infection, and can be extended to other specific hospital and pathological scenarios to produce tailored estimates of the most effective strategies.
Accuracy of serum procalcitonin for the diagnosis of sepsis in neonates and children with systemic inflammatory syndrome: a meta-analysis
Background A number of biomarkers have been studied for the diagnosis of sepsis in paediatrics, but no gold standard has been identified. Procalcitonin (PCT) was demonstrated to be an accurate biomarker for the diagnosis of sepsis in adults and showed to be promising in paediatrics. Our study reviewed the diagnostic accuracy of PCT as an early biomarker of sepsis in neonates and children with suspected sepsis. Methods A comprehensive literature search was carried out in Medline/Pubmed, Embase, ISI Web of Science, CINAHL and Cochrane Library, for studies assessing PCT accuracy in the diagnosis of sepsis in children and neonates with suspected sepsis. Studies in which the presence of infection had been confirmed microbiologically or classified as “probable” by chart review were included. Studies comparing patients to healthy subjects were excluded. We analysed data on neonates and children separately. Our primary outcome was the diagnostic accuracy of PCT at the cut-off of 2-2.5 ng/ml, while as secondary outcomes we analysed PCT cut-offs <2 ng/ml and >2.5 ng/ml. Pooled sensitivities and specificities were calculated by a bivariate meta-analysis and heterogeneity was graphically evaluated. Results We included 17 studies, with a total of 1408 patients (1086 neonates and 322 children). Studies on neonates with early onset sepsis (EOS) and late onset sepsis (LOS) were grouped together. In the neonatal group, we calculated a sensitivity of 0.85, confidence interval (CI) (0.76; 0.90) and specificity of 0.54, CI (0.38; 0.70) at the PCT cut-off of 2.0-2.5 ng/ml. In the paediatric group it was not possible to undertake a pooled analysis at the PCT cut-off of 2.0-2.5 ng/ml, due to the paucity of the studies. Conclusions PCT shows a moderate accuracy for the diagnosis of sepsis in neonates with suspected sepsis at the cut-off of 2.0-2.5 ng/ml. More studies with high methodological quality are warranted, particularly in neonates, studies considering EOS and LOS separately are needed to improve specificity. Trial registration PROSPERO Identifier: CRD42016033809 . Registered 30 Jan 2016.
On the impact of the erroneous identification of inertial sensors’ locations on segments and whole-body centers of mass accelerations: a sensitivity study in one transfemoral amputee
The kinematics of the body center of mass (bCoM) may provide crucial information supporting the rehabilitation process of people with transfemoral amputation. The use of magneto-inertial measurement units (MIMUs) is promising as it may allow in-the-field bCoM motion monitoring. Indeed, bCoM acceleration might be obtained by fusing the estimated accelerations of body segments’ centers of mass (sCoM), the formers being computed from the measured accelerations by segment-mounted MIMUs and the known relative position between each pair of MIMU and underlying sCoM. This paper investigates how erroneous identifications of MIMUs positions impact the accuracy of estimated 3D sCoM and bCoM accelerations in transfemoral amputee gait. Using an experimental design approach, 215 simulations of erroneous identifications of MIMUs positions (up to 0.02 m in each direction) were simulated over seven recorded gait cycles of one participant. MIMUs located on the trunk and sound lower limbs were shown to explain up to 77% of the variance in the accuracy of the estimated bCoM acceleration, presumably due to the higher mass and/or angular velocity of these segments during gait of lower-limb amputees. Therefore, a special attention should be paid when identifying the positions of MIMUs located on segments contributing the most to the investigated motion.