Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
77 result(s) for "Singer, Julian"
Sort by:
Scaffolding medical student knowledge and skills: team-based learning (TBL) and case-based learning (CBL)
Background Two established small-group learning paradigms in medical education include Case-based learning (CBL) and Team-based learning (TBL). Characteristics common to both pedagogies include the use of an authentic clinical case, active small-group learning, activation of existing knowledge and application of newly acquired knowledge. However, there are also variances between the two teaching methods, and a paucity of studies that consider how these approaches fit with curriculum design principles. In this paper we explore student and facilitator perceptions of the two teaching methods within a medical curriculum, using Experience based learning (ExBL) as a conceptual lens. Methods A total of 34/255 (13%) Year 2 medical students completed four CBLs during the 2019 Renal and Urology teaching block, concurrent to their usual curriculum activities, which included weekly TBLs. Questionnaires were distributed to all students ( n  = 34) and CBL facilitators ( n  = 13). In addition, all students were invited to attend focus groups. Data were analysed using descriptive statistics and thematic analysis. Results In total, 23/34 (71%) of students and 11/13 (85%) of facilitators completed the questionnaires. Twelve students (35%) participated in focus groups. Findings indicate their experience in CBL to be positive, with many favourable aspects that built on and complemented their TBL experience that provided an emphasis on the basic sciences. The learning environment was enriched by the CBL framework that allowed application of knowledge to solve clinical problems within the small groups with consistent facilitator guidance and feedback, their capacity to focus discussion, and associated efficiencies in learning. Conclusion While the TBL model was integral in developing students’ knowledge and understanding of basic science concepts, the CBL model was integral in developing students’ clinical reasoning skills. The strengths of CBL relative to TBL included the development of authentic clinical reasoning skills and guided facilitation of small group discussion. Our findings suggest that delivery of a medical curriculum may be enhanced through increased vertical integration, applying TBL in earlier phases of the medical program where the focus is on basic science principles, with CBL becoming more relevant as students move towards clinical immersion.
Fiber Derived Microbial Metabolites Prevent Acute Kidney Injury Through G-Protein Coupled Receptors and HDAC Inhibition
Short-chain fatty acids (SCFA) derived from gut microbial fermentation of fiber have been shown to exert anti-inflammatory and immune-modulatory properties in acute kidney injury (AKI). However the direct mechanistic link between SCFAs, diet and the gut microbiome is yet to be established. Using the murine model of folic-acid nephropathy (FAN), we examined the effect of dietary fiber on development of AKI (day 2) and subsequent chronic kidney disease (CKD) (day 28). FAN was induced in wild-type and knockout mice lacking G protein–coupled receptors GPR41 , GPR43 , or GPR109A . Mice were randomized to high-fiber or normal-chow diets, or SCFAs in drinking water. We used 16S rRNA sequencing to assess the gut microbiome and 1 H-NMR spectroscopy for metabolic profiles. Mice fed high-fiber were partially protected against development of AKI and subsequent CKD, exhibiting better kidney function throughout, less tubular injury at day 2 and less interstitial fibrosis and chronic inflammation at day 28 vs controls. Fiber modified the gut microbiome and alleviated dysbiosis induced by AKI, promoting expansion of SCFA-producing bacteria Bifidobacterium and Prevotella , which increased fecal and serum SCFA concentrations. SCFA treatment achieved similar protection, but not in the absence of GPR41 or GPR109A. Histone deacetylase activity (HDAC) was inhibited in kidneys of high-fiber fed mice. We conclude that dietary manipulation of the gut microbiome protects against AKI and subsequent CKD, mediated by HDAC inhibition and activation of GPR41 and GPR109A by SCFAs. This study highlights the potential of the gut microbiome as a modifiable target in the prevention of AKI.
Rapamycin and inulin for third-dose vaccine response stimulation (RIVASTIM): Inulin – study protocol for a pilot, multicentre, randomised, double-blinded, controlled trial of dietary inulin to improve SARS-CoV-2 vaccine response in kidney transplant recipients
IntroductionKidney transplant recipients (KTRs) are at an increased risk of hospitalisation and death from COVID-19. Vaccination against SARS-CoV-2 is our primary risk mitigation strategy, yet vaccine effectiveness in KTRs is suboptimal. Strategies to enhance vaccine efficacy are therefore required. Current evidence supports the role of the gut microbiota in shaping the immune response to vaccination. Gut dysbiosis is common in KTRs and is a potential contributor to impaired COVID-19 vaccine responses. We hypothesise that dietary fibre supplementation will attenuate gut dysbiosis and promote vaccine responsiveness in KTRs.Methods and analysisRapamycin and inulin for third-dose vaccine response stimulation-inulin is a multicentre, randomised, prospective, double-blinded, placebo-controlled pilot trial examining the effect of dietary inulin supplementation prior to a third dose of COVID-19 vaccine in KTRs who have failed to develop protective immunity following a 2-dose COVID-19 vaccine schedule. Participants will be randomised 1:1 to inulin (active) or maltodextrin (placebo control), administered as 20 g/day of powdered supplement dissolved in water, for 4 weeks prior to and following vaccination. The primary outcome is the proportion of participants in each trial arm that achieve in vitro neutralisation of live SARS-CoV-2 virus at 4 weeks following a third dose of COVID-19 vaccine. Secondary outcomes include the safety and tolerability of dietary inulin, the diversity and differential abundance of gut microbiota, and vaccine-specific immune cell populations and responses.Ethics and disseminationEthics approval was obtained from the Central Adelaide Local Health Network (CALHN) Human Research Ethics Committee (HREC) (approval number: 2021/HRE00354) and the Sydney Local Health District (SHLD) HREC (approval numbers: X21-0411 and 2021/STE04280). Results of this trial will be published following peer-review and presented at scientific meetings and congresses.Trial registration numberACTRN12621001465842.
Rapamycin and inulin for booster vaccine response stimulation (RIVASTIM)—rapamycin: study protocol for a randomised, controlled trial of immunosuppression modification with rapamycin to improve SARS-CoV-2 vaccine response in kidney transplant recipients
Kidney transplant recipients are at an increased risk of severe COVID-19-associated hospitalisation and death. Vaccination has been a key public health strategy to reduce disease severity and infectivity, but the effectiveness of COVID vaccines is markedly reduced in kidney transplant recipients. Urgent strategies to enhance vaccine efficacy are needed. Methods: RIVASTIM-rapamycin is a multicentre, randomised, controlled trial examining the effect of immunosuppression modification prior to a third dose of COVID-19 vaccine in kidney transplant recipients who have failed to develop protective immunity to a 2-dose COVID-19 vaccine schedule. Participants will be randomised 1:1 to either remain on standard of care immunosuppression with tacrolimus, mycophenolate, and prednisolone (control) or cease mycophenolate and commence sirolimus (intervention) for 4 weeks prior to and following vaccination. The primary outcome is the proportion of participants in each trial arm who develop protective serological neutralisation of live SARS-CoV-2 virus at 4–6 weeks following a third COVID-19 vaccination. Secondary outcomes include SARS-CoV-receptor binding domain IgG, vaccine-specific immune cell populations and responses, and the safety and tolerability of sirolimus switch. Discussion: Immunosuppression modification strategies may improve immunological vaccine response. We hypothesise that substituting the mTOR inhibitor sirolimus for mycophenolate in a triple drug regimen will enhance humoral and cell-mediated responses to COVID vaccination for kidney transplant recipients. Trial registration: Australia New Zealand Clinical Trials Registry ACTRN12621001412820. Registered on 20 October 2021; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=382891&isReview=true
Protocol for a pilot single-centre, parallel-arm, randomised controlled trial of dietary inulin to improve gut health in solid organ transplantation: the DIGEST study
IntroductionKidney transplantation remains the best treatment for end-stage kidney disease, however the requirement for indefinite immunosuppression increases the risk of cardiovascular disease, cancer and infection, leading to a reduction in long-term patient and graft survival. The gut microbiome is a critical determinant of health and modulates host immunity and metabolism through a number of recognised pathways, including through the production of immunomodulatory short-chain fatty acids (SCFA). Dietary supplementation with non-digestible fibre can augment the microbial production of SCFA and lead to favourable immune and metabolic outcomes, although this has yet to be shown in human kidney transplant recipients.Methods and analysisDietary inulin for gut health in solid-organ transplantation (DIGEST) is a single-centre, unblinded, pilot parallel-arm randomised controlled trial designed to assess the feasibility and adherence of dietary inulin, a naturally occurring dietary fibre, in the early post-transplant period in kidney transplant recipients. Participants will be randomised at day 28 post-transplant to a 4-week period of dietary inulin (10–20 g/day) in addition to standard care, or standard care alone, and followed-up until week 12 post-transplant.The primary outcomes of the study are: (i) the feasibility of participant recruitment, randomisation and retention; (ii) adherence to the intervention (inulin) and (iii) the tolerability of inulin determined by changes in gastrointestinal symptoms as scored on the Gastrointestinal Symptom Rating Scale.Secondary outcomes include: (1) glycaemic variability determined by continuous glucose monitoring; (2) abundance of SCFA-producing microbiota, as determined by 16s rRNA sequencing of the faecal metagenome; (3) serum SCFA concentrations; (4) peripheral blood immune cell populations; (5) recipient inflammatory and metabolic profiles and (6) the incidence of biopsy-proven acute rejection and kidney function determined by estimated glomerular filtration rate.Ethics and disseminationAll study visits, clinical and laboratory assessments will be integrated into usual post-transplant care, creating no additional healthcare encounters or procedures. The risks associated with this study are minor. Inulin has been shown to be well tolerated across a variety of cohorts, with the occurrence of short-term adverse gastrointestinal symptoms self-limiting. However, with gastrointestinal adverse events common following kidney transplantation, the tolerability of inulin in this cohort remains unknown. The results of DIGEST will be published in peer-reviewed journals and presented at academic conferences. This study has been approved by the Sydney Local Health District’s Ethics Committee (Royal Prince Alfred Hospital Zone).Trial registration numberACTRN12620000623998.
Dietary Inulin to Improve SARS-CoV-2 Vaccine Response in Kidney Transplant Recipients: The RIVASTIM-Inulin Randomised Controlled Trial
Kidney transplant recipients are at an increased risk of hospitalisation and death from SARS-CoV-2 infection, and standard two-dose vaccination schedules are typically inadequate to generate protective immunity. Gut dysbiosis, which is common among kidney transplant recipients and known to effect systemic immunity, may be a contributing factor to a lack of vaccine immunogenicity in this at-risk cohort. The gut microbiota modulates vaccine responses, with the production of immunomodulatory short-chain fatty acids by bacteria such as Bifidobacterium associated with heightened vaccine responses in both observational and experimental studies. As SCFA-producing populations in the gut microbiota are enhanced by diets rich in non-digestible fibre, dietary supplementation with prebiotic fibre emerges as a potential adjuvant strategy to correct dysbiosis and improve vaccine-induced immunity. In a randomised, double-bind, placebo-controlled trial of 72 kidney transplant recipients, we found dietary supplementation with prebiotic inulin for 4 weeks before and after a third SARS-CoV2 mRNA vaccine to be feasible, tolerable, and safe. Inulin supplementation resulted in an increase in gut Bifidobacterium, as determined by 16S RNA sequencing, but did not increase in vitro neutralisation of live SARS-CoV-2 virus at 4 weeks following a third vaccination. Dietary fibre supplementation is a feasible strategy with the potential to enhance vaccine-induced immunity and warrants further investigation.
Genetically modified wine yeasts and risk assessment studies covering different steps within the wine making process
The use of gene technology to modify the genome of wine yeasts belonging to the species Saccharomyces cerevisiae began in the early 1990s. From a purely scientific point of view, many yeast constructs [genetically modified organisms (GMO)] have been made so far, covering more or less all stages of the wine making process in which microorganisms or commercial enzymes play a key role. The range of theoretical applications is summarised in this report. So far, only two wine-producing countries worldwide allow the use of engineered wine yeasts; the changing situation in Germany regarding consumers’ attitudes towards gene technology, and foodstuffs thus produced, will be outlined here. Experiments at the Geisenheim Research Center have highlighted the essential stages of the wine making process where yeasts are involved by using engineered wine yeasts in comparison with non-engineered yeast strains. Greenhouse simulations revealed the persistence of genetically modified (gm) yeasts when these were used as fertilizers, as vintners do with yeast lees after the fermentation process. Furthermore, the persistence of engineered yeast was also monitored in fermentations, after bottling, and after biological treatment of winery waste water. It turned out that engineered wine yeast strains behave like non-engineered wine yeasts. They also persist in the winery interior and installations as well as becoming part of the yeast flora on grape vines in a vineyard with annual fluctuations in the composition of the yeast populations.
The Utility of Pre- and Post-Transplant Oral Glucose Tolerance Tests: Identifying Kidney Transplant Recipients With or at Risk of New Onset Diabetes After Transplant
Background: New onset diabetes after transplant (NODAT) is common in kidney transplant recipients (KTRs). Identifying patients at risk prior to transplant may enable strategies to mitigate NODAT, with a pre-transplant oral glucose tolerance test (OGTT) suggested by the KDIGO 2020 Guidelines for this purpose. Methods: We investigated the utility of pre- and post-transplant OGTTs to stratify risk and diagnose NODAT in a retrospective, single-centre cohort study of all non-diabetic KTRs transplanted between 2003 and 2018. Results: We identified 597 KTRs who performed a pre-transplant OGTT, of which 441 had their post-transplant glycaemic status determined by a clinical diagnosis of NODAT or OGTT. Pre-transplant dysglycaemia was identified in 28% of KTRs and was associated with increasing age ( p < 0.001), BMI ( p = 0.03), and peritoneal dialysis ( p < 0.001). Post-transplant dysglycaemia was common with NODAT and impaired glucose tolerance (IGT) occurring in 143 (32%) and 121 (27%) patients, respectively. Pre-transplant IGT was strongly associated with NODAT development (OR 3.8, p < 0.001). Conclusion: A pre-transplant OGTT identified candidates at increased risk of post-transplant dysglycaemia and NODAT, as diagnosed by an OGTT. Robust prospective trials are needed to determine whether various interventions can reduce post-transplant risk for candidates with an abnormal pre-transplant OGTT.
Scaffolding medical student knowledge and skills: team-based learning
Two established small-group learning paradigms in medical education include Case-based learning (CBL) and Team-based learning (TBL). Characteristics common to both pedagogies include the use of an authentic clinical case, active small-group learning, activation of existing knowledge and application of newly acquired knowledge. However, there are also variances between the two teaching methods, and a paucity of studies that consider how these approaches fit with curriculum design principles. In this paper we explore student and facilitator perceptions of the two teaching methods within a medical curriculum, using Experience based learning (ExBL) as a conceptual lens. A total of 34/255 (13%) Year 2 medical students completed four CBLs during the 2019 Renal and Urology teaching block, concurrent to their usual curriculum activities, which included weekly TBLs. Questionnaires were distributed to all students (n = 34) and CBL facilitators (n = 13). In addition, all students were invited to attend focus groups. Data were analysed using descriptive statistics and thematic analysis. In total, 23/34 (71%) of students and 11/13 (85%) of facilitators completed the questionnaires. Twelve students (35%) participated in focus groups. Findings indicate their experience in CBL to be positive, with many favourable aspects that built on and complemented their TBL experience that provided an emphasis on the basic sciences. The learning environment was enriched by the CBL framework that allowed application of knowledge to solve clinical problems within the small groups with consistent facilitator guidance and feedback, their capacity to focus discussion, and associated efficiencies in learning. While the TBL model was integral in developing students' knowledge and understanding of basic science concepts, the CBL model was integral in developing students' clinical reasoning skills. The strengths of CBL relative to TBL included the development of authentic clinical reasoning skills and guided facilitation of small group discussion. Our findings suggest that delivery of a medical curriculum may be enhanced through increased vertical integration, applying TBL in earlier phases of the medical program where the focus is on basic science principles, with CBL becoming more relevant as students move towards clinical immersion.
Opportunities and priorities for breast surgical research
The 2013 Breast Cancer Campaign gap analysis established breast cancer research priorities without a specific focus on surgical research or the role of surgeons on breast cancer research. This Review aims to identify opportunities and priorities for research in breast surgery to complement the 2013 gap analysis. To identify these goals, research-active breast surgeons met and identified areas for breast surgery research that mapped to the patient pathway. Areas included diagnosis, neoadjuvant treatment, surgery, adjuvant therapy, and attention to special groups (eg, those receiving risk-reducing surgery). Section leads were identified based on research interests, with invited input from experts in specific areas, supported by consultation with members of the Association of Breast Surgery and Independent Cancer Patients' Voice groups. The document was iteratively modified until participants were satisfied that key priorities for surgical research were clear. Key research gaps included issues surrounding overdiagnosis and treatment; optimising treatment options and their selection for neoadjuvant therapies and subsequent surgery; reducing rates of re-operations for breast-conserving surgery; generating evidence for clinical effectiveness and cost-effectiveness of breast reconstruction, and mechanisms for assessing novel interventions; establishing optimal axillary management, especially post-neoadjuvant treatment; and defining and standardising indications for risk-reducing surgery. We propose strategies for resolving these knowledge gaps. Surgeons are ideally placed for a central role in breast cancer research and should foster a culture of engagement and participation in research to benefit patients and health-care systems. Development of infrastructure and surgical research capacity, together with appropriate allocation of research funding, is needed to successfully address the key clinical and translational research gaps that are highlighted in this Review within the next two decades.