Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
476 result(s) for "Singer, Michael C."
Sort by:
Human–nature connectedness as a pathway to sustainability: A global meta‐analysis
Internationally agreed sustainability goals are being missed. Here, we conduct global meta‐analyses to assess how the extent to which humans see themselves as part of nature—known as human–nature connectedness (HNC)—can be used as a leverage point to reach sustainability. A meta‐analysis of 147 correlational studies shows that individuals with high HNC had more pronature behaviours and were significantly healthier than those with low HNC. A meta‐analysis of 59 experimental studies shows significant increases in HNC after manipulations involving contact with nature and mindfulness practices. Surprisingly, this same meta‐analysis finds no significant effect of environmental education on HNC. Thus, HNC is positively linked to mind‐sets that value sustainability and behaviours that enhance it. Further, we argue that HNC can be enhanced by targeted practices, and we identify those most likely to succeed. Our results suggest that enhancing HNC, via promotion of targeted practices, can improve sustainability and should be integrated into conservation policy.
Butterflies embrace maladaptation and raise fitness in colonizing novel host
We illustrate an evolutionary host shift driven by increased fitness on a novel host, despite maladaptation to it in six separate host‐adaptive traits. Here, local adaptation is defined as possession of traits that provide advantage in specific environmental contexts; thus individuals can have higher fitness in benign environments to which they are maladapted than in demanding environments to which they are well adapted. A population of the butterfly Euphydryas editha adapted to a long‐lived, chemically well‐defended host, Pedicularis, had traditionally been under natural selection to avoid the ephemeral, less‐defended Collinsia. The lifespan of Collinsia was so short that it senesced before larvae entered diapause. After logging killed Pedicularis in clear‐cut patches and controlled burning simultaneously extended Collinsia lifespan, insect fitness on Collinsia in clearings suddenly became higher than on Pedicularis in adjacent unlogged patches. Collinsia was rapidly colonized and preference for it evolved, but insects feeding on it retained adaptations to Pedicularis in alighting bias, two aspects of postalighting oviposition preference, dispersal bias, geotaxis, and clutch size, all acting as maladaptations to Collinsia. Nonetheless, populations boomed on Collinsia in clearings, creating sources that fed pseudosinks in unlogged patches where Pedicularis was still used. After c. 20 years, butterfly populations in clearings disappeared and the metapopulation reverted to Pedicularis‐feeding. Here we show, via experimental manipulation of oviposition by local Pedicularis‐adapted and imported Collinsia‐adapted butterflies, that the highest survival at that time would have been from eggs laid in clearings by butterflies adapted to Collinsia. Second highest were locals on Pedicularis. In third place would have been locals on Collinsia in clearings, because local females maladaptively preferred senescent plants. Collinsia had been colonized despite maladaptation and, after successional changes, abandoned because of it. However, the abandoned Collinsia could still have provided the highest fitness, given appropriate adaptation. The butterflies had tumbled down an adaptive peak.
Practice patterns on the management of secondary hyperparathyroidism in the United States: Results from a modified Delphi panel
Secondary hyperparathyroidism (SHPT) is common in patients with chronic kidney disease (CKD). Many recommendations in the Kidney Disease Improving Global Outcomes (KDIGO) CKD-mineral and bone disorder guidelines are supported by modest evidence and predate the approval of newer agents. Therefore, an expert panel defined consensus SHPT practice patterns in the United States with real-world context from the nephrology community. Ten US healthcare providers and one patient participated in a modified Delphi method comprising three phases. Consensus was determined via iterative responses to a questionnaire based on the 2009 and 2017 KDIGO guidelines and published literature on the identification, evaluation, monitoring, and interventional strategies for patients with SHPT. The threshold for consensus was 66% agreement. Panelists generally agreed with KDIGO recommendations, with some differences. Consensus was reached on 42/105 (40%), 95/105 (90.5%), and 105/105 (100%) questions after phases 1, 2, and 3, respectively. Panelists unanimously agreed that SHPT treatment is often started late. There was a preference for serum phosphate level <4.6 mg/dL, and consensus to maintain serum calcium levels <9.5 mg/dL. There was unanimous agreement for vitamin D analogues as first-line options in patients not on dialysis with severe, progressive SHPT and unanimous preference for intravenous calcimimetic, etelcalcetide, in appropriate in-center dialysis patients. Factors such as formularies, dialysis center protocols, and insurance were recognized to influence therapeutic strategies. Expert consensus was reached on SHPT management, further defining therapeutic strategies and medication use and emphasizing need for treatment early. Despite evidence-based treatment preferences supported by clinical experience, factors other than scientific evidence influence decision making, particularly with medications.
Lethal trap created by adaptive evolutionary response to an exotic resource
Global transport of organisms by humans provides novel resources to wild species, which often respond maladaptively. Native herbivorous insects have been killed feeding on toxic exotic plants, which acted as ‘ecological traps’ 1 – 4 . We document a novel ‘eco-evolutionary trap’ stemming from the opposite effect; that is, high fitness on an exotic resource despite lack of adaptation to it. Plantago lanceolata was introduced to western North America by cattle-ranching. Feeding on this exotic plant released a large, isolated population of the native butterfly Euphydryas editha from a longstanding trade-off between maternal fecundity and offspring mortality. Because of this release—and despite a reduced insect developmental rate when feeding on this exotic— Plantago immediately supported higher larval survival than did the insects’ traditional host, Collinsia parviflora 5 . Previous work from the 1980s documented an evolving preference for Plantago by ovipositing adults 6 . We predicted that if this trend continued the insects could endanger themselves, because the availability of Plantago to butterflies is controlled by humans, who change land management practices faster than butterflies evolve 6 . Here we report the fulfilment of this prediction. The butterflies abandoned Collinsia and evolved total dependence on Plantago . The trap was set. In 2005, humans withdrew their cattle, springing the trap. Grasses grew around the Plantago , cooling the thermophilic insects, which then went extinct. This local extinction could have been prevented if the population had retained partial use of Collinsia , which occupied drier microhabitats unaffected by cattle removal. The flush of grasses abated quickly, rendering the meadow once again suitable for Euphydryas feeding on either host, but no butterflies were observed from 2008 to 2012. In 2013–2014, the site was naturally recolonized by Euphydryas feeding exclusively on Collinsia , returning the system to its starting point and setting the stage for a repeat of the anthropogenic evolutionary cycle. Local extinction of the butterfly Euphydryas editha occurred after the population was caught in an eco-evolutionary trap set when the insects evolved unanimous preference for an exotic host, Plantago lanceolata , and sprung when that host became embedded in grasses after humans removed cattle.
Geographic mosaics of phenology, host preference, adult size and microhabitat choice predict butterfly resilience to climate warming
The climate-sensitive butterfly Euphydryas editha exhibited interpopulation variation in both phenology and egg placement, exposing individuals to diverse thermal environments. We measured ‘eggspace’ temperatures adjacent to natural egg clutches in populations distributed across a range of latitudes (36°8′ – 44°6′) and altitudes (213 – 3171 m). Eggs laid > 50 cm above the ground averaged 3.1°C cooler than ambient air at 1 m height, while eggs at < 1 cm height averaged 15.5°C hotter than ambient, ranging up to 47°C. Because of differences in egg height, eggs at 3171 m elevation and 20.6°C ambient air experienced mean eggspace temperatures 7°C hotter than those at 213 m elevation and ambient 33.3°C. Experimental eggs survived for one hour at 45°C but were killed by 48°C. Eggs laid low, by positively geotactic butterflies, risked thermal stress. However, at populations where eggs were laid lowest, higher oviposition would have incurred incidental predation from grazers. Interpopulation variation in phenology influenced thermal environment and buffered exposure to thermal stress. At sites with hotter July temperatures, the single annual flight/oviposition period was advanced such that eggs were laid on earlier dates, with cooler ambient temperatures. The insects possessed two mechanisms for advancing egg phenology; they could advance timing of larval diapause-breaking and/or shorten the life cycle by becoming smaller adults. Mean weight of newly-eclosed females varied among populations from 92 to 285 mg, suggesting that variable adult size did influence phenology. Possible options for in situ mitigation of thermal stress include further advancing phenology and raising egg height. We argue that these options exist, as evidenced by current variation in these traits and by failure of E. editha to conform to restrictive biogeographic constraints, such as the expectation that populations at equatorial and poleward range limits be confined to higher and lower elevations, respectively. This optimistic example shows how complex local adaptation can generate resilience to climate warming.
Reciprocal transplants reveal asymmetric local adaptation of Himalayan Rhododendron approaching elevational range limit
As plant species expand their upper limits of distribution under current warming, some retain both traditional climate space and biotic environment while others encounter novel conditions. The latter is the case for Rhododendron campanulatum, a woody shrub that grows both above and below treeline at our study site in the Eastern Himalayas where a very conspicuous, stable treeline was defined by a nearly contiguous canopy of tall Abies spectabilis trees, many of which are over a century old. Prior work showed that treeline had remained static in this region while R. campanulatum expanded its elevational range limit. We tested local adaptation of R. campanulatum by performing reciprocal transplants between the species' current elevational range limit (4023 m above sea level [asl]) and just above treeline (3876 m asl). Contrary to expectation, the coldest temperatures of late winter and early mid‐spring were experienced by plants at the lower elevation: R. campanulatum at species' limit (upper site) were covered by snow for a longer period (40 more days) and escaped the coldest temperatures suffered by conspecifics at treeline (lower site). The harsher spring conditions at treeline likely explain why leaves were smaller at treeline (15.3 cm2) than at species limit (21.3 cm2). Contrary to results from equivalent studies in other regions, survival was reduced more by downslope than by upslope movement, again potentially due to extreme cold temperatures observed at treeline in spring. Upslope transplantation had no effect on mortality, but mortality of species limit saplings transplanted downslope was three times higher than that of residents at both sites. A general expectation is that locals should survive better than foreign transplants, but survival of locals and immigrants at our species limit site was identical. However, those species limit saplings that survived the transplant to treeline grew faster than both locals at treeline and the transplants at species limit. Overall, we found asymmetric adaptation: Compared with treeline saplings, those at species limit (147 m above treeline) were more tolerant of extremes in the growing season but less tolerant of extremes in winter and early mid‐spring, displaying local adaptation in a more complex manner than simply home advantage, and complicating predictions about impacts of future regional climate change.
Phenological asynchrony between herbivorous insects and their hosts: signal of climate change or pre-existing adaptive strategy?
Climate change alters phenological relations between interacting species. We might expect the historical baseline, or starting-point, for such effects to be precise synchrony between the season at which a consumer most requires food and the time when its resources are most available. We synthesize evidence that synchrony was not the historical condition in two insect–plant interactions involving Edith's checkerspot butterfly (Euphydryas editha), the winter moth (Operophtera brumata) and their host plants. Initial observations of phenological mismatch in both systems were made prior to the onset of anthropogenically driven climate change. Neither species can detect the phenology of its host plants with precision. In both species, evolution of life history has involved compromise between maximizing fecundity and minimizing mortality, with the outcome being superficially maladaptive strategies in which many, or even most, individuals die of starvation through poor synchrony with their host plants. Where phenological asynchrony or mismatch with resources forms the starting point for effects of anthropogenic global warming, consumers are particularly vulnerable to impacts that exacerbate the mismatch. This vulnerability likely contributed to extinction of a well-studied metapopulation of Edith's checkerspot, and to the skewed geographical pattern of population extinctions underlying a northward and upward range shift in this species.
MULTITRAIT, HOST-ASSOCIATED DIVERGENCE AMONG SETS OF BUTTERFLY POPULATIONS: IMPLICATIONS FOR REPRODUCTIVE ISOLATION AND ECOLOGICAL SPECIATION
When populations use different resources, they tend to diverge in traits that affect performance on those resources. The extent and complexity of divergence that is achieved will depend on gene flow, genetic constraints, and the character of divergent selection. We describe divergent host adaptation among Californian populations of the Melitaeine butterfly, Euphydryas editha. Divergence in seven traits created parallel phenotypic suites, each suite associated with the use of a different host species, either Collinsia torreyi or Pedicularis semibarbata. The suites involved alighting responses of adults (probably to visual stimuli), chemosensory responses to leaf surfaces, vertical positioning of adults and larvae (probably due to geotaxis), partitioning of reproductive effort among clutches, and larval performance. Remarkably, the divergent suites did not occur sympatrically, despite ubiquitous co-occurrence of the hosts, and we know of only one site where any Collinsia species is used sympatrically with another host. In contrast, E. editha often uses two host genera sympatrically when neither of them is Collinsia. We suggest that adaptation to Collinsia is incompatible with adaptation to other hosts and may generate extrinsic postzygotic reproductive isolation among populations. Despite the apparent rarity of host-shift-associated speciation in Melitaeine butterflies, adoption of Collinsia as a host may lead to allopatric ecological speciation.
Endangered Quino checkerspot butterfly and climate change: Short-term success but long-term vulnerability?
The butterfly Euphydryas editha is known to be vulnerable to climate events that exacerbate natural phenological asynchrony between insect and hosts. In prior work, populations of E. editha have been more persistent at high latitudes and high elevations than in the south and at low elevations, consistent with response to observed warming climate. However, poleward range shifts by the endangered subspecies E. e. quino are blocked by urbanization and range shifts to higher elevation may require host shifts. Prior studies were inconclusive as to whether elevational and host shifts were already occurring. Here, we re-evaluate this scenario with new evidence from molecular genetics, host-choice behaviour and field recording of butterfly distribution. We found a statistically significant upward shift in population distribution since 2009. Insects in the expanding region were neither genomic outliers within Quino nor specifically adapted to their principal local host genus, Collinsia. These diverse data collectively support the hypothesis that an elevational range expansion is already in progress, accompanied and facilitated by a shift of principal host from Plantago to Collinsia . Quino appears resilient to warming climate. However, projections indicate that most or all of Quino’s current range in the USA, including the new high elevation expansion, will become uninhabitable. Our most frequent projected future range (circa 2050) is c. 400 km northward from current populations, hence conservation of Quino may eventually require assisted colonization. For now, Critical Habitat (sensu Endangered Species Act) has been designated at sites around the new upper elevational limit that were not known to be occupied. Designating Critical Habitat outside the historic range is a pioneering response to climate change. This politically challenging, non-traditional, climate change-oriented conservation effort exemplifies flexible thinking needed for species vulnerable to climate change.