Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
128
result(s) for
"Singer, Steven W."
Sort by:
Metabolic Engineering of Cupriavidus necator H16 for Sustainable Biofuels from CO2
by
Singer, Steven W.
,
Fong, Bonnie
,
Panich, Justin
in
09 BIOMASS FUELS
,
artificial leaf
,
bacteria
2021
Decelerating global warming is one of the predominant challenges of our time and will require conversion of CO2 to usable products and commodity chemicals. Of particular interest is the production of fuels, because the transportation sector is a major source of CO2 emissions. Here, we review recent technological advances in metabolic engineering of the hydrogen-oxidizing bacterium Cupriavidus necator H16, a chemolithotroph that naturally consumes CO2 to generate biomass. We discuss recent successes in biofuel production using this organism, and the implementation of electrolysis/artificial photosynthesis approaches that enable growth of C. necator using renewable electricity and CO2. Last, we discuss prospects of improving the nonoptimal growth of C. necator in ambient concentrations of CO2.
Cupriavidus necator has a wide metabolic range and naturally creates a biopolymer, poly[(R)-3 hydroxybutyrate] (PHB). Using metabolic engineering techniques, carbon flux can be directed away from PHB synthesis toward the generation of biofuels and bioproducts.Researchers demonstrated the production of many biofuel products using C. necator, including methyl ketones, isoprenoids and terpenes, isobutanol, alkanes and alkenes, and a wide variety of commodity chemicals from CO2.Growth of C. necator and bioproduct production using electrolysis was recently demonstrated, including the use of an artificial leaf system.While genetic engineering of C. necator remains a laborious process, synthetic biology tools for this organism are being expanded with new technologies that will allow for large alterations to its genome.
Journal Article
Extraordinary phylogenetic diversity and metabolic versatility in aquifer sediment
by
Wu, Dongying
,
Tringe, Susannah G.
,
Castelle, Cindy J.
in
631/208/212/2306
,
631/326/2565
,
Aquifers
2013
Microorganisms in the subsurface represent a substantial but poorly understood component of the Earth’s biosphere. Subsurface environments are complex and difficult to characterize; thus, their microbiota have remained as a ‘dark matter’ of the carbon and other biogeochemical cycles. Here we deeply sequence two sediment-hosted microbial communities from an aquifer adjacent to the Colorado River, CO, USA. No single organism represents more than ~1% of either community. Remarkably, many bacteria and archaea in these communities are novel at the phylum level or belong to phyla lacking a sequenced representative. The dominant organism in deeper sediment, RBG-1, is a member of a new phylum. On the basis of its reconstructed complete genome, RBG-1 is metabolically versatile. Its wide respiration-based repertoire may enable it to respond to the fluctuating redox environment close to the water table. We document extraordinary microbial novelty and the importance of previously unknown lineages in sediment biogeochemical transformations.
Turnover of sediment organic matter contributes to global carbon cycling, yet the microorganisms involved are largely unknown. Castelle
et al.
reveal that an aquifer sediment core hosts a ‘zoo’ of organisms, including representatives of a previously undescribed phylum (Zixibacteria).
Journal Article
Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts
by
Sundstrom, Eric R
,
Rodriguez, Alberto
,
Simmons, Blake A
in
Advantages
,
Alternative energy sources
,
Aromatic compounds
2017
Background:Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a conversion host that is able to both efficiently assimilate the major lignocellulose-derived carbon sources and divert their metabolites toward specific bioproducts.Results:In this study, the carotenogenic yeast Rhodosporidium toruloides was examined for its ability to convert lignocellulose into two non-native sesquiterpenes with biofuel (bisabolene) and pharmaceutical (amorphadiene) applications. We found that R. toruloides can efficiently convert a mixture of glucose and xylose from hydrolyzed lignocellulose into these bioproducts, and unlike many conventional production hosts, its growth and productivity were enhanced in lignocellulosic hydrolysates relative to purified substrates. This organism was demonstrated to havesuperior growth in corn stover hydrolysates prepared by two different pretreatment methods, one using a novel bio-compatible ionic liquid (IL) choline α-ketoglutarate, which produced 261 mg/L of bisabolene at bench scale, and the other using an alkaline pretreatment, which produced 680 mg/L of bisabolene in a high-gravity fed-batch bioreactor. Interestingly, R. toruloides was also observed to assimilate p-coumaric acid liberated from acylated grass lignin in the IL hydrolysate, a finding we verified with purified substrates. R. toruloides was also able to consume several additional compounds with aromatic motifs similar to lignin monomers, suggesting that this organism may have the metabolic potential to convert depolymerized lignin streams alongside lignocellulosic sugars.Conclusions:This study highlights the natural compatibility of R. toruloides with bioprocess conditions relevant to lignocellulosic biorefineries and demonstrates its ability to produce non-native terpenes.
Journal Article
Ionic liquid-tolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts
by
Yu, Chaowei
,
Simmons, Blake A.
,
Thelen, Michael P.
in
09 BIOMASS FUELS
,
biochemical pathways
,
Bioconversion
2016
Chemical and physical pretreatment of biomass is a critical step in the conversion of lignocellulose to biofuels and bioproducts. Ionic liquid (IL) pretreatment has attracted significant attention due to the unique ability of certain ILs to solubilize some or all components of the plant cell wall. However, these ILs inhibit not only the enzyme activities but also the growth and productivity of microorganisms used in downstream hydrolysis and fermentation processes. While pretreated biomass can be washed to remove residual IL and reduce inhibition, extensive washing is costly and not feasible in large-scale processes. IL-tolerant microorganisms and microbial communities have been discovered from environmental samples and studies begun to elucidate mechanisms of IL tolerance. The discovery of IL tolerance in environmental microbial communities and individual microbes has lead to the proposal of molecular mechanisms of resistance. In this article, we review recent progress on discovering IL-tolerant microorganisms, identifying metabolic pathways and mechanisms of tolerance, and engineering microorganisms for IL tolerance. Research in these areas will yield new approaches to overcome inhibition in lignocellulosic biomass bioconversion processes and increase opportunities for the use of ILs in biomass pretreatment.
Journal Article
Development of dual‐inducible duet‐expression vectors for tunable gene expression control and CRISPR interference‐based gene repression in Pseudomonas putida KT2440
by
Gauttam, Rahul
,
Simmons, Blake A.
,
Singer, Steven W.
in
BASIC BIOLOGICAL SCIENCES
,
CRISPR
,
E coli
2021
Summary
The development of P. putida as an industrial host requires a sophisticated molecular toolbox for strain improvement, including vectors for gene expression and repression. To augment existing expression plasmids for metabolic engineering, we developed a series of dual‐inducible duet‐expression vectors for P. putida KT2440. A number of inducible promoters (Plac, Ptac, PtetR/tetA and Pbad) were used in different combinations to differentially regulate the expression of individual genes. Protein expression was evaluated by measuring the fluorescence of reporter proteins (GFP and RFP). Our experiments demonstrated the use of compatible plasmids, a useful approach to coexpress multiple genes in P. putida KT2440. These duet vectors were modified to generate a fully inducible CRISPR interference system using two catalytically inactive Cas9 variants from S. pasteurianus (dCas9) and S. pyogenes (spdCas9). The utility of developed CRISPRi system(s) was demonstrated by repressing the expression of nine conditionally essential genes, resulting in growth impairment and prolonged lag phase for P. putida KT2440 growth on glucose. Furthermore, the system was shown to be tightly regulated, tunable and to provide a simple way to identify essential genes with an observable phenotype.
To augment existing expression plasmids for metabolic engineering, we developed a series of dual‐inducible duet‐expression vectors for P. putida KT2440. These duet vectors were modified to generate a fully inducible CRISPR interference system using two catalytically inactive Cas9 variants from S. pasteurianus (dCas9) and S. pyogenes (spdCas9). The utility of developed CRISPRi system(s) was demonstrated by repressing the expression of nine conditionally essential genes, resulting in growth impairment and prolonged lag phase for P. putida KT2440 growth on glucose.
Journal Article
Refining the phylum Chlorobi by resolving the phylogeny and metabolic potential of the representative of a deeply branching, uncultivated lineage
2016
Recent studies have expanded the phylum Chlorobi, demonstrating that the green sulfur bacteria (GSB), the original cultured representatives of the phylum, are a part of a broader lineage whose members have more diverse metabolic capabilities that overlap with members of the phylum Bacteroidetes. The 16S rRNA gene of an uncultivated clone, OPB56, distantly related to the phyla Chlorobi and Bacteroidetes, was recovered from Obsidian Pool in Yellowstone National Park; however, the detailed phylogeny and function of OPB56 and related clones have remained unknown. Culturing of thermophilic bacterial consortia from compost by adaptation to grow on ionic-liquid pretreated switchgrass provided a consortium in which one of the most abundant members, NICIL-2, clustered with OPB56-related clones. Phylogenetic analysis using the full-length 16S rRNA gene from NICIL-2 demonstrated that it was part of a monophyletic clade, referred to as OPB56, distinct from the Bacteroidetes and Chlorobi. A near complete draft genome (>95% complete) was recovered from metagenomic data from the culture adapted to grow on ionic-liquid pretreated switchgrass using an automated binning algorithm, and this genome was used for marker gene-based phylogenetic analysis and metabolic reconstruction. Six additional genomes related to NICIL-2 were reconstructed from metagenomic data sets obtained from thermal springs at Yellowstone National Park and Nevada Great Boiling Spring. In contrast to the 16S rRNA gene phylogenetic analysis, protein phylogenetic analysis was most consistent with the clustering of the
Chlorobea
,
Ignavibacteria
and OPB56 into a single phylum level clade. Metabolic reconstruction of NICIL-2 demonstrated a close linkage with the class
Ignavibacteria
and the family
Rhodothermaceae
, a deeply branching Bacteroidetes lineage. The combined phylogenetic and functional analysis of the NICIL-2 genome has refined the membership in the phylum Chlorobi and emphasized the close evolutionary and metabolic relationship between the phyla Chlorobi and the Bacteroidetes.
Journal Article
CAZymes from the thermophilic fungus Thermoascus aurantiacus are induced by C5 and C6 sugars
by
Fleissner, Andre
,
Hopson, Cynthia
,
Schuerg, Timo
in
Arabinose
,
Batch culture
,
Biodiesel fuels
2021
Background Filamentous fungi are excellent lignocellulose degraders, which they achieve through producing carbohydrate active enzymes (CAZymes). CAZyme production is highly orchestrated and gene expression analysis has greatly expanded understanding of this important biotechnological process. The thermophilic fungus Thermoascus aurantiacus secretes highly active thermostable enzymes that enable saccharifications at higher temperatures; however, the genome-wide measurements of gene expression in response to CAZyme induction are not understood. Results A fed-batch system with plant biomass-derived sugars d-xylose, l-arabinose and cellobiose established that these sugars induce CAZyme expression in T. aurantiacus. The C5 sugars induced both cellulases and hemicellulases, while cellobiose specifically induced cellulases. A minimal medium formulation was developed to enable gene expression studies of T. aurantiacus with these inducers. It was found that d-xylose and l-arabinose strongly induced a wide variety of CAZymes, auxiliary activity (AA) enzymes and carbohydrate esterases (CEs), while cellobiose facilitated lower expression of mostly cellulase genes. Furthermore, putative orthologues of different unfolded protein response genes were up-regulated during the C5 sugar feeding together with genes in the C5 sugar assimilation pathways. Conclusion This work has identified two additional CAZyme inducers for T. aurantiacus, l-arabinose and cellobiose, along with d-xylose. A combination of biochemical assays and RNA-seq measurements established that C5 sugars induce a suite of cellulases and hemicellulases, providing paths to produce broad spectrum thermotolerant enzymatic mixtures.
Journal Article
Generation of a platform strain for ionic liquid tolerance using adaptive laboratory evolution
by
Feist, Adam M.
,
Simmons, Blake A.
,
Mohamed, Elsayed T.
in
Acetic acid
,
Adaptive laboratory evolution
,
Applied Microbiology
2017
Background
There is a need to replace petroleum-derived with sustainable feedstocks for chemical production. Certain biomass feedstocks can meet this need as abundant, diverse, and renewable resources. Specific ionic liquids (ILs) can play a role in this process as promising candidates for chemical pretreatment and deconstruction of plant-based biomass feedstocks as they efficiently release carbohydrates which can be fermented. However, the most efficient pretreatment ILs are highly toxic to biological systems, such as microbial fermentations, and hinder subsequent bioprocessing of fermentative sugars obtained from IL-treated biomass.
Methods
To generate strains capable of tolerating residual ILs present in treated feedstocks, a tolerance adaptive laboratory evolution (TALE) approach was developed and utilized to improve growth of two different
Escherichia coli
strains, DH1 and K-12 MG1655, in the presence of two different ionic liquids, 1-ethyl-3-methylimidazolium acetate ([C
2
C
1
Im][OAc]) and 1-butyl-3-methylimidazolium chloride ([C
4
C
1
Im]Cl). For multiple parallel replicate populations of
E. coli
, cells were repeatedly passed to select for improved fitness over the course of approximately 40 days. Clonal isolates were screened and the best performing isolates were subjected to whole genome sequencing.
Results
The most prevalent mutations in tolerant clones occurred in transport processes related to the functions of
mdtJI
, a multidrug efflux pump, and
yhdP
, an uncharacterized transporter. Additional mutations were enriched in processes such as transcriptional regulation and nucleotide biosynthesis. Finally, the best-performing strains were compared to previously characterized tolerant strains and showed superior performance in tolerance of different IL and media combinations (i.e., cross tolerance) with robust growth at 8.5% (w/v) and detectable growth up to 11.9% (w/v) [C
2
C
1
Im][OAc].
Conclusion
The generated strains thus represent the best performing platform strains available for bioproduction utilizing IL-treated renewable substrates, and the TALE method was highly successful in overcoming the general issue of substrate toxicity and has great promise for use in tolerance engineering.
Journal Article
An auto-inducible mechanism for ionic liquid resistance in microbial biofuel production
2014
Ionic liquids (ILs) are emerging as superior solvents for numerous industrial applications, including the pretreatment of biomass for the microbial production of biofuels. However, some of the most effective ILs used to solubilize cellulose inhibit microbial growth, decreasing efficiency in the overall process. Here we identify an IL-resistance mechanism consisting of two adjacent genes from
Enterobacter lignolyticus
, a rain forest soil bacterium that is tolerant to an imidazolium-based IL. These genes retain their full functionality when transferred to an
Escherichia coli
biofuel host, with IL resistance established by an inner membrane transporter, regulated by an IL-inducible repressor. Expression of the transporter is dynamically adjusted in direct response to IL, enabling growth and biofuel production at levels of IL that are toxic to native strains. This natural auto-regulatory system provides the basis for engineering IL-tolerant microbes, which should accelerate progress towards effective conversion of lignocellulosic biomass to fuels and renewable chemicals.
Ionic liquids (ILs) are important solvents in the microbial production of biofuels, but can inhibit microbial growth. Here, the authors transfer newly discovered IL-resistance genes from rain forest soil bacteria to
E. coli
and report growth and biofuel production at IL levels that are otherwise toxic to native strains.
Journal Article
Experimental and theoretical insights into the effects of pH on catalysis of bond-cleavage by the lignin peroxidase isozyme H8 from Phanerochaete chrysosporium
2021
Background Lignin peroxidases catalyze a variety of reactions, resulting in cleavage of both β-O-4′ ether bonds and C–C bonds in lignin, both of which are essential for depolymerizing lignin into fragments amendable to biological or chemical upgrading to valuable products. Studies of the specificity of lignin peroxidases to catalyze these various reactions and the role reaction conditions such as pH play have been limited by the lack of assays that allow quantification of specific bond-breaking events. The subsequent theoretical understanding of the underlying mechanisms by which pH modulates the activity of lignin peroxidases remains nascent. Here, we report on combined experimental and theoretical studies of the effect of pH on the enzyme-catalyzed cleavage of β-O-4′ ether bonds and of C–C bonds by a lignin peroxidase isozyme H8 from Phanerochaete chrysosporium and an acid stabilized variant of the same enzyme. Results Using a nanostructure initiator mass spectrometry assay that provides quantification of bond breaking in a phenolic model lignin dimer we found that catalysis of degradation of the dimer to products by an acid-stabilized variant of lignin peroxidase isozyme H8 increased from 38.4% at pH 5 to 92.5% at pH 2.6. At pH 2.6, the observed product distribution resulted from 65.5% β-O-4′ ether bond cleavage, 27.0% Cα-C1 carbon bond cleavage, and 3.6% Cα-oxidation as by-product. Using ab initio molecular dynamic simulations and climbing-image Nudge Elastic Band based transition state searches, we suggest the effect of lower pH is via protonation of aliphatic hydroxyl groups under which extremely acidic conditions resulted in lower energetic barriers for bond-cleavages, particularly β-O-4′ bonds. Conclusion These coupled experimental results and theoretical explanations suggest pH is a key driving force for selective and efficient lignin peroxidase isozyme H8 catalyzed depolymerization of the phenolic lignin dimer and further suggest that engineering of lignin peroxidase isozyme H8 and other enzymes involved in lignin depolymerization should include targeting stability at low pH.
Journal Article