Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
331
result(s) for
"Singh, V. P. (Vijay P.)"
Sort by:
Entropy theory and its application in environmental and water engineering
by
Singh, V. P. (Vijay P.)
in
Entropy
,
Hydraulic engineering
,
Hydraulic engineering -- Mathematics
2013
Entropy Theory and its Application in Environmental and Water Engineering responds to the need for a book that deals with basic concepts of entropy theory from a hydrologic and water engineering perspective and then for a book that deals with applications of these concepts to a range of water engineering problems. The range of applications of entropy is constantly expanding and new areas finding a use for the theory are continually emerging. The applications of concepts and techniques vary across different subject areas and this book aims to relate them directly to practical problems of environmental and water engineering.
The book presents and explains the Principle of Maximum Entropy (POME) and the Principle of Minimum Cross Entropy (POMCE) and their applications to different types of probability distributions. Spatial and inverse spatial entropy are important for urban planning and are presented with clarity. Maximum entropy spectral analysis and minimum cross entropy spectral analysis are powerful techniques for addressing a variety of problems faced by environmental and water scientists and engineers and are described here with illustrative examples.
Giving a thorough introduction to the use of entropy to measure the unpredictability in environmental and water systems this book will add an essential statistical method to the toolkit of postgraduates, researchers and academic hydrologists, water resource managers, environmental scientists and engineers. It will also offer a valuable resource for professionals in the same areas, governmental organizations, private companies as well as students in earth sciences, civil and agricultural engineering, and agricultural and rangeland sciences.
This book:
* Provides a thorough introduction to entropy for beginners and more experienced users
* Uses numerous examples to illustrate the applications of the theoretical principles
* Allows the reader to apply entropy theory to the solution of practical problems
* Assumes minimal existing mathematical knowledge
* Discusses the theory and its various aspects in both univariate and bivariate cases
* Covers newly expanding areas including neural networks from an entropy perspective and future developments.
A review of widely used drought indices and the challenges of drought assessment under climate change
2023
Under climate change, drought assessment, which can address nonstationarity in drought indicators and anthropogenic implications, is required to mitigate drought impacts. However, the development of drought indices for a reliable drought assessment is a challenging task in the warming climate. Thus, this study discusses factors that should be considered in developing drought indices in changing climate. Inconsistent drought assessment can be obtained, depending on the baseline period defined in developing drought indices. Therefore, the baseline period should represent the contemporary climate but should also correspond to long enough observations for stable parameter estimation. The importance of accurate potential evapotranspiration (
PET
) for drought indices becomes higher under a warming climate. Although the Penman–Monteith method yields accurate
PET
values, depending on the climate and vegetation cover, other suitable
PET
formulas, such as the Hargreaves method, with fewer hydrometeorological data can be used. Since a single drought index is not enough to properly monitor drought evolution, a method that can objectively combine multiple drought indices is required. Besides, quantifying anthropogenic impacts, which can add more uncertainty, on drought assessment is also important to adapt to the changing drought conditions and minimize human-induced drought. Drought is expected to occur more frequently with more severe, longer, and larger areal extent under global warming, since a more arid background, which climate change will provide, intensifies land–atmosphere feedback, leading to the desiccation of land and drying atmosphere. Thus, an accurate drought assessment, based on robust drought indices, is required.
Journal Article
Laboratory manual for groundwater, wells, and pumps
\"The over-exploitation of groundwater and marked changes in climate over recent decades has led to unacceptable declines in groundwater resources. Laboratory Manual for Groundwater, Wells, and Pumps serves as a valuable resource and provides a multi-disciplinary overview for academics, administrators, scientists, policymakers, and professionals involved in the managing sustainable groundwater development programs. It includes practical guidance on the measurement of groundwater flow, soil properties, aquifer properties, wells and their design, as well as the latest state-of-the-art information on pumps and their testing, and groundwater modeling\"-- Provided by publisher.
Compound Extremes in Hydroclimatology: A Review
2018
Extreme events, such as drought, heat wave, cold wave, flood, and extreme rainfall, have received increasing attention in recent decades due to their wide impacts on society and ecosystems. Meanwhile, the compound extremes (i.e., the simultaneous or sequential occurrence of multiple extremes at single or multiple locations) may exert even larger impacts on society or the environment. Thus, the past decade has witnessed an increasing interest in compound extremes. In this study, we review different approaches for the statistical characterization and modeling of compound extremes in hydroclimatology, including the empirical approach, multivariate distribution, the indicator approach, quantile regression, and the Markov Chain model. The limitation in the data availability to represent extremes and lack of flexibility in modeling asymmetric/tail dependences of multiple variables/events are among the challenges in the statistical characterization and modeling of compound extremes. Major future research endeavors include probing compound extremes through both observations with improved data availability (and statistical model development) and model simulations with improved representation of the physical processes to mitigate the impacts of compound extremes.
Journal Article
Engineering hydrology : an introduction to processes, analysis, and modeling
This comprehensive engineering textbook offers a thorough overview of all aspects of hydrology and shows how to apply hydrologic principles for effective management of water resources. It presents detailed explanations of scientific principles along with real-world applications and technologies.
New Hybrids of ANFIS with Several Optimization Algorithms for Flood Susceptibility Modeling
by
Chapi, Kamran
,
Chen, Wei
,
Bin Ahmad, Baharin
in
Algorithms
,
Artificial intelligence
,
floodplains
2018
This study presents three new hybrid artificial intelligence optimization models—namely, adaptive neuro-fuzzy inference system (ANFIS) with cultural (ANFIS-CA), bees (ANFIS-BA), and invasive weed optimization (ANFIS-IWO) algorithms—for flood susceptibility mapping (FSM) in the Haraz watershed, Iran. Ten continuous and categorical flood conditioning factors were chosen based on the 201 flood locations, including topographic wetness index (TWI), river density, stream power index (SPI), curvature, distance from river, lithology, elevation, ground slope, land use, and rainfall. The step-wise weight assessment ratio analysis (SWARA) model was adopted for the assessment of relationship between flood locations and conditioning factors. The ANFIS model, based on SWARA weights, was employed for providing FSMs with three optimization models to enhance the accuracy of prediction. To evaluate the model performance and prediction capability, root-mean-square error (RMSE) and receiver operating characteristic (ROC) curve (area under the ROC (AUROC)) were used. Results showed that ANFIS-IWO with lower RMSE (0.359) had a better performance, while ANFIS-BA with higher AUROC (94.4%) showed a better prediction capability, followed by ANFIS0-IWO (0.939) and ANFIS-CA (0.921). These models can be suggested for FSM in similar climatic and physiographic areas for developing measures to mitigate flood damages and to sustainably manage floodplains.
Journal Article
Integrated drought management
by
Singh, V. P. (Vijay P.), editor
,
Jhajharia, Deepak, editor
,
Mirabbasi, Rasoul, editor
in
Droughts.
,
Drought management.
,
Drought forecasting.
2024
\"The first volume of this comprehensive global perspective on Integrated Drought Management is focused on understanding drought, causes, and the assessment of drought impacts. It explains different types of drought: agricultural, meteorological, hydrological, and socio-economic droughts, their indices and the impact of climate change on drought. The volume also examines spatio-temporal analysis of drought, variability and patterns, assessment, and drought evaluation. With numerous case studies from India, Mexico, Turkey, Brazil, US, and other countries, this volume serves as a valuable resource for all readers who want to advance their knowledge on drought and risk management\"-- Provided by publisher.
Fractional contribution of global warming and regional urbanization to intensifying regional heatwaves across Eurasia
by
Wang, Gang
,
Luo, Ming
,
Xu, Chong-Yu
in
Anthropogenic factors
,
Atmospheric circulation
,
Central Asia
2022
Increasing frequency and intensity of heatwaves (HWs) in a warming climate exert catastrophic impacts on human society and natural environment. However, spatiotemporal variations of HW and their driving factors still remain obscure, especially for HW changes over Eurasia, the region with the largest population of the world. Here we provide a systematic investigation of the HW changes over Eurasia and quantify the contributions of different natural and anthropogenic factors to these changes. Increasing frequency, duration and intensity of HW are observed in most parts of Eurasia, and the occurrence of the first HW event tends to be earlier as well, especially in Europe, East Asia, Central Asia, Southwest Asia, and the Mediterranean region. These intensified HW activities are particularly stronger and more widespread after 1990 s. The spatial pattern of the increasing HW trend is closely tied to the interdecadal changes of sea surface temperature in the North Pacific. More intense hot airmass convection, atmospheric circulation obstruction over the Mediterranean region and the enhanced Mongolian high hinders the southward movement of cold air and cold and wet airmass exchange. Further analyses suggest that the intensifying Eurasian HW tendency is a combined result of both climate change and human activities. Overall, the fractional contributions of climate warming, urbanization, standardized precipitation evaporation index, and Atlantic Multi-decadal Oscillation to the frequency of Eurasian HWs are 30%, 25%, 21% and 24%, respectively. It is also suggested that the relative influential rate of different driving factors for HW varies over time and differs in different areas.
Journal Article