Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
27
result(s) for
"Sippula, Olli"
Sort by:
Displacement Factors for Aerosol Emissions From Alternative Forest Biomass Use
by
Tikka, Aapo
,
Sippula, Olli
,
Hartikainen, Anni
in
Aerosols
,
Air pollution
,
Alternative energy sources
2024
Substituting alternative materials and energy sources with forest biomass can cause significant environmental consequences, such as alteration in the released emissions which can be described by displacement factors (DFs). Until now, DFs of wood‐based materials have included greenhouse gas (GHG) emissions and have been associated with lower fossil and process‐based emissions than non‐wood counterparts. In addition to GHGs, aerosols released in combustion processes, for example, alter radiative forcing in the atmosphere and consequently have an influence on climate. In this study, the objective was to quantify the changes in the most important aerosol emission components for cases when wood‐based materials and energy were used to replace the production of high‐density polyethylene (HDPE) plastic, common fossil‐based construction materials (concrete, steel and brick), non‐wood textile materials and energy produced by fossil fuels and peat. For this reason, we expanded the DF calculations to include aerosol emissions of total suspended particles (TSP), respirable particulate matter (PM10), fine particles (PM2.5), black carbon (BC), nitrogen oxides (NOx), sulphur dioxide (SO2) and non‐methane volatile organic compounds (NMVOCs) based on the embodied energies of materials and energy sources. The DFs for cardboard implied a decrease in BC, SO2 and NMVOC emissions but an increase in the other emission components. DFs for sawn wood mainly indicated higher emissions of both particles and gaseous emissions compared to non‐wood counterparts. DFs for wood‐based textiles demonstrated increased particle emissions and reduced gaseous emissions. DFs for energy biomass mainly implied an increase in emissions, especially if biomass was combusted in small‐scale appliances. Our main conclusion highlights the critical need to thoroughly assess how using forest biomass affects aerosol emissions. This improved understanding of the aerosol emissions of the forestry sector is crucial for a comprehensive evaluation of the climate and health implications associated with forest biomass use. Substituting alternative materials and energy sources with forest biomass can cause significant environmental consequences, such as alteration in the released emissions which can be described by displacement factors (DFs). Until now, DFs of wood‐based materials have included greenhouse gas emissions, but aerosol emissions, despite their climate impact, have not been sufficiently considered. In this study, we expanded the DF calculations to include the most important aerosol emission components. The improved understanding of the aerosol emissions of the forestry sector is crucial for a comprehensive evaluation of the climate and health implications of forest biomass use.
Journal Article
Radiative Forcing of Aerosol Emissions Under Alternative Wood Use Scenarios in Finland
by
Mielonen, Tero
,
Sippula, Olli
,
Hartikainen, Anni
in
Aerosols
,
Air pollution
,
anthropogenic aerosols
2025
Use of forest biomass may induce changes in the aerosol emissions, with subsequent impacts on the direct and indirect climate effects of these short‐lived climate forcers. We studied how alternative wood use scenarios affected the aerosol emissions and consequent radiative forcing in Finland. In all alternative scenarios, the harvest level of forest biomass was increased by 10 million m3 compared to the baseline. The increased biomass harvest was assigned to four different uses: (i) to sawn wood, (ii) to pulp‐based products, (iii) to energy biomass combusted in small‐scale appliances or (iv) to energy biomass combusted in medium‐to‐large scale boilers. Aerosol emissions (black carbon (BC), organic carbon (OC) and sulphur dioxide (SO2)) under these scenarios were estimated using displacement factors (DFs). The global aerosol–climate model ECHAM‐HAMMOZ was used to study instantaneous radiative forcing due to aerosol–radiation interactions (IRFARI) and effective radiative forcing (ERF), based on the differences in aerosol emissions between the alternative wood use scenarios and the baseline scenario. The results indicated that the use of sawn wood and energy biomass combusted in medium‐ to large‐scale boilers decreased radiative forcings, implying climate cooling, whereas the increased use of pulpwood increased them. Energy biomass combustion in small‐scale appliances increased IRFARI by 0.004 W m−2 but decreased ERF by −0.260 W m−2, specifically due to a strong increase in carbonaceous aerosols. Alternative use of forest biomass notably influenced aerosol emissions and their climate impacts, and it can be concluded that increased forest biomass use requires a comprehensive assessment of aerosol emissions alongside greenhouse gases (GHGs). Given the consequent reduction in radiative forcing from aerosol emissions, we conclude that the greatest overall climate benefits could be achieved by prioritising the production of long‐lived wood‐based products. Instantaneous and effective radiative forcings for the increased wood use scenarios in Finland were studied in comparison to current wood use. An increase of 10 million m3 in the annual harvest was alternatively allocated to energy biomass combusted in small‐scale appliances (80 EB SSB) or in medium‐to‐large scale boilers (80 EB LSB), to sawn wood (80SW) or to pulp‐based products (80PW), and was used to replace nonwood products and energy. Alternative use of forest biomass notably influenced aerosol emissions and their climate impacts, indicating that increased forest biomass use requires a comprehensive assessment of aerosol emissions alongside greenhouse gases.
Journal Article
The Effect of Wood Species on Fine Particle and Gaseous Emissions from a Modern Wood Stove
2024
Residential wood combustion (RWC) is a significant source of gaseous and particulate emissions causing adverse health and environmental effects. Several factors affect emissions, but the effects of the fuel wood species on emissions are currently not well understood. In this study, the Nordic wood species (named BirchA, BirchB, Spruce, SpruceDry, Pine and Alder) were combusted in a modern stove, and the emissions were studied. The lowest emissions were obtained from the combustion of BirchA and the highest from Spruce and Alder. The fine particle mass (PM2.5) was mainly composed of elemental carbon (50–70% of PM2.5), which is typical in modern appliances. The lowest PAH concentrations were measured from BirchA (total PAH 107 µg/m3) and Pine (250 µg/m3). In the ignition batch, the PAH concentration was about 4-fold (416 µg/m3). The PAHs did not correlate with other organic compounds, and thus, volatile organic compounds (VOCs) or organic carbon (OC) concentrations cannot be used as an indicator of PAH emissions. Two birch species from different origins with a similar chemical composition but different density produced partially different emission profiles. This study indicates that emission differences may be due more to the physical properties of the wood and the combustion conditions than to the wood species themselves.
Journal Article
Metabolic Profiling as Well as Stable Isotope Assisted Metabolic and Proteomic Analysis of RAW 264.7 Macrophages Exposed to Ship Engine Aerosol Emissions: Different Effects of Heavy Fuel Oil and Refined Diesel Fuel
2016
Exposure to air pollution resulting from fossil fuel combustion has been linked to multiple short-term and long term health effects. In a previous study, exposure of lung epithelial cells to engine exhaust from heavy fuel oil (HFO) and diesel fuel (DF), two of the main fuels used in marine engines, led to an increased regulation of several pathways associated with adverse cellular effects, including pro-inflammatory pathways. In addition, DF exhaust exposure was shown to have a wider response on multiple cellular regulatory levels compared to HFO emissions, suggesting a potentially higher toxicity of DF emissions over HFO. In order to further understand these effects, as well as to validate these findings in another cell line, we investigated macrophages under the same conditions as a more inflammation-relevant model. An air-liquid interface aerosol exposure system was used to provide a more biologically relevant exposure system compared to submerged experiments, with cells exposed to either the complete aerosol (particle and gas phase), or the gas phase only (with particles filtered out). Data from cytotoxicity assays were integrated with metabolomics and proteomics analyses, including stable isotope-assisted metabolomics, in order to uncover pathways affected by combustion aerosol exposure in macrophages. Through this approach, we determined differing phenotypic effects associated with the different components of aerosol. The particle phase of diluted combustion aerosols was found to induce increased cell death in macrophages, while the gas phase was found more to affect the metabolic profile. In particular, a higher cytotoxicity of DF aerosol emission was observed in relation to the HFO aerosol. Furthermore, macrophage exposure to the gas phase of HFO leads to an induction of a pro-inflammatory metabolic and proteomic phenotype. These results validate the effects found in lung epithelial cells, confirming the role of inflammation and cellular stress in the response to combustion aerosols.
Journal Article
The complex composition of organic aerosols emitted during burning varies between Arctic and boreal peat
by
Czech, Hendryk
,
Zimmermann, Ralf
,
Schneider, Eric
in
Aerosols
,
Aliphatic compounds
,
Biological activity
2024
Peatlands in the northern hemisphere are a major carbon storage but face an increased risk of wildfires due to climate change leading to large-scale smoldering fires in boreal and Arctic peatlands. Smoldering fires release organic carbon rich particulate matter, which influences the earth’s radiative balance and can cause adverse health effects for humans. Here we characterize the molecular composition of biomass burning particulate matter generated by laboratory burning experiments of peat by electrospray ionization 21 T Fourier-transform ion cyclotron resonance mass spectrometry, revealing a highly complex mixture of aromatic and aliphatic organic compounds with abundant heteroatoms including oxygen, sulfur and up to five nitrogen atoms. Primary organosulfur species are identified in the emissions of peat-smoldering, in part also containing nitrogen. Differences are observed when comparing structural motifs as well as the chemical composition of boreal and Arctic peat burning emissions, with the latter containing compounds with more nitrogen and sulfur.
Journal Article
The impact of photochemical aging on secondary aerosol formation from a marine engine
2025
Ship traffic is known as an important contributor to air pollution. Regulations aimed at reducing sulfur oxide pollution by limiting the fuel sulfur content (FSC) may also decrease primary particulate matter (PM) emitted from ships. However, there is a knowledge gap regarding how the FSC affects secondary aerosol formation. The emissions from a research ship engine operated with either low sulfur heavy fuel oil (LS-HFO) (FSC = 0.5%) or marine gas oil (MGO) (FSC = 0.01%), were photochemically processed in the oxidation flow reactor “PEAR” to achieve an equivalent photochemical age between 0 and 9 days in the atmosphere. FSC was found to have no significant impact on secondary organic aerosol formation after 3 days of aging, at 1.7 ± 0.4 g/kg for MGO and 1.5 ± 0.4 g/kg for LS-HFO. Furthermore, the composition and oxidative pathways remained similar regardless of FSC. However, because of the higher secondary SO
4
formation and primary aerosol emissions, LS-HFO had significantly higher total PM than MGO.
Journal Article
Fates of nutrient elements and heavy metals during thermal conversion of cattle slurry-derived anaerobic digestates
2024
Thermal processes are emerging as promising solutions to recovering phosphorus and other nutrient elements from anaerobic digestates. The feasibility of nutrient element recovery depends largely on the fates of nutrient elements and heavy metals during thermal processing. This study assesses the partitioning of macronutrients (N, P, K, Na, Ca and Mg) and heavy metals (Zn, Cu, and Mn) between condensed and gaseous phases during thermal conversion of cattle slurry digestates in gas atmospheres of pyrolysis, combustion, and gasification processes. This study also assesses the chemical forms of macronutrients retained in combustion ashes. The partitioning of elements between condensed and gaseous phases was quantified by mass balances based on elemental analyses of char and ash residues. The char and ash residues were prepared in a fixed-bed, batch reactor at temperatures within the range 800–1000 °C. Powder X-ray diffraction was used to identify the chemical forms of macronutrient elements in combustion ashes. Volatilisation of P was low (< 20%) when the digestates were heated in inert and oxidising atmospheres, whereas a reducing atmosphere volatilized P to a major extent (~ 60% at 1000 °C). Oxidising atmospheres increased volatilisation of N but suppressed volatilisation of K, Na, and Zn. Volatilisation of the following elements was low (< 30%) in all investigated operating conditions: Ca, Mg, Mn, and Cu. The combustion ashes contained both high concentrations of P (around 7 w/w%) and acceptable concentrations of regulated heavy metals (Cu, and Zn) for application on agricultural and forest soils in Finland. Phosphorous was retained in the combustion ashes in the form of whitlockite. This form of P is expected to be available to plants when the ashes are added to soil.
Journal Article
High Temperature Electrical Charger to Reduce Particulate Emissions from Small Biomass-Fired Boilers
2021
New particulate matter (PM) filtering technologies are needed to meet the emission regulations for small combustion appliances. In this work, we investigate the performance of a novel electrical particle filtration system, the single needle shielded corona charger (SCC), which offers an advantageous solution for PM control in boilers by enhancing particulate deposition within existing boiler sections. Experiments under different operating conditions of a wood-fired boiler were performed, wherein the SCC was installed upstream of either a condensing heat exchanger (CHX) or a cyclone. PM reduction was found to be strongly affected by the SCC temperature and the following collection surface area, and reached its highest reduction efficiency of >90% at the temperature range of 400–500 °C when operating in combination with a CHX. The SCC–cyclone combination was less efficient, providing a 27% PM reduction, as a result of the low surface area and residence time in the cyclone. These results indicate that the SCC can feasibly provide particle filtration when combined with a CHX, wet scrubber, or a cyclone to meet the new emission regulation requirements. The system is best suited for small-scale boilers but can be scaled up to larger boilers by increasing the number of corona chargers.
Journal Article
Role of microbial and chemical composition in toxicological properties of indoor and outdoor air particulate matter
by
Rintala, Helena
,
Hirvonen, Maija-Riitta
,
Sippula, Olli
in
Air Microbiology
,
Air pollution
,
Air Pollution, Indoor - adverse effects
2014
Background
Ambient air particulate matter (PM) is increasingly considered to be a causal factor evoking severe adverse health effects. People spend the majority of their time indoors, which should be taken into account especially in future risk assessments, when the role of outdoor air particles transported into indoor air is considered. Therefore, there is an urgent need for characterization of possible sources seasonally for harmful health outcomes both indoors and outdoors.
Methods
In this study, we collected size-segregated (PM
10–2.5
, PM
2.5–0.2
) particulate samples with a high volume cascade impactor (HVCI) simultaneously both indoors and outdoors of a new single family detached house at four different seasons. The chemical composition of the samples was analyzed as was the presence of microbes. Mouse macrophages were exposed to PM samples for 24 hours. Thereafter, the levels of the proinflammatory cytokines, NO-production, cytotoxicity and changes in the cell cycle were investigated. The putative sources of the most toxic groups of constituents were resolved by using the principal component analysis (PCA) and pairwise dependencies of the variables were detected with Spearman correlation.
Results
Source-related toxicological responses clearly varied according to season. The role of outdoor sources in indoor air quality was significant only in the warm seasons and the significance of outdoor microbes was also larger in the indoor air. During wintertime, the role of indoor sources of the particles was more significant, as was also the case for microbes. With respect to the outdoor sources, soil-derived particles during a road dust episode and local wood combustion in wintertime were the most important factors inducing toxicological responses.
Conclusions
Even though there were clear seasonal differences in the abilities of indoor and outdoor air to induce inflammatory and cytotoxic responses, there were relatively small differences in the chemical composition of the particles responsible of those effects. Outdoor sources have only a limited effect on indoor air quality in a newly built house with a modern ventilation system at least in a low air pollution environment. The most important sources for adverse health related toxicological effects were related to soil-derived constituents, local combustion emissions and microbes.
Journal Article
Effect of Atmospheric Aging on Soot Particle Toxicity in Lung Cell Models at the Air–Liquid Interface: Differential Toxicological Impacts of Biogenic and Anthropogenic Secondary Organic Aerosols (SOAs)
2022
Secondary organic aerosols (SOAs) formed from anthropogenic or biogenic gaseous precursors in the atmosphere substantially contribute to the ambient fine particulate matter [PM
in aerodynamic diameter (
)] burden, which has been associated with adverse human health effects. However, there is only limited evidence on their differential toxicological impact.
We aimed to discriminate toxicological effects of aerosols generated by atmospheric aging on combustion soot particles (SPs) of gaseous biogenic (
) or anthropogenic (naphthalene) precursors in two different lung cell models exposed at the air-liquid interface (ALI).
Mono- or cocultures of lung epithelial cells (A549) and endothelial cells (EA.hy926) were exposed at the ALI for 4 h to different aerosol concentrations of a photochemically aged mixture of primary combustion SP and
(
) or naphthalene (
). The internally mixed soot/SOA particles were comprehensively characterized in terms of their physical and chemical properties. We conducted toxicity tests to determine cytotoxicity, intracellular oxidative stress, primary and secondary genotoxicity, as well as inflammatory and angiogenic effects.
We observed considerable toxicity-related outcomes in cells treated with either SOA type. Greater adverse effects were measured for
compared with
in both cell models, whereas the nano-sized soot cores alone showed only minor effects. At the functional level, we found that
augmented the secretion of malondialdehyde and interleukin-8 and may have induced the activation of endothelial cells in the coculture system. This activation was confirmed by comet assay, suggesting secondary genotoxicity and greater angiogenic potential. Chemical characterization of PM revealed distinct qualitative differences in the composition of the two secondary aerosol types.
In this study using A549 and EA.hy926 cells exposed at ALI, SOA compounds had greater toxicity than primary SPs. Photochemical aging of naphthalene was associated with the formation of more oxidized, more aromatic SOAs with a higher oxidative potential and toxicity compared with
. Thus, we conclude that the influence of atmospheric chemistry on the chemical PM composition plays a crucial role for the adverse health outcome of emissions. https://doi.org/10.1289/EHP9413.
Journal Article